
Efficient Multi Agent Path Finding with Turn Actions

Yue Zhang, Daniel Harabor, Pierre Le Bodic, Peter J. Stuckey
Monash University, Australia

{Yue.Zhang, Daniel.Harabor, Pierre.LeBodic, Peter.Stuckey}@monash.edu

Abstract

Current approaches for real-world Multi-Agent Path Finding
(MAPF) usually start with a simplified MAPF model and
modify the resulting plans so they are kinematically feasi-
ble. We investigate one such problem, called MAPF with
turn actions (MAPFT ), and show that ignoring the kinematic
constraints significantly increases solution cost. A first mod-
ification of the popular Conflict-Based Search algorithm to
MAPFT yields significantly better plans but comes at the cost
of substantial decreases in scalability. We then introduce sev-
eral techniques that can improve the performance of CBS
for MAPFT , including stronger and generalised versions of
existing symmetry-breaking constraints and a novel pruning
technique that eliminates redundant branches in the CBS con-
straint tree. Experimental results on six popular MAPF do-
mains show convincing improvements for CBS success rate
and substantial reductions in node expansions and runtime.

Introduction
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is the
well-studied problem of planning paths for multiple agents
so that they can travel from their predefined start locations
to goal locations without any collisions. MAPF has a wide
range of applications, including online video games (Silver
2005), traffic-controlling system (Dresner and Stone 2008)
and automatic warehouse (Hönig et al. 2019).

Existing algorithms, like Conflict-Based Search (CBS)
(Sharon et al. 2015), can efficiently solve MAPF problems
with up to hundreds of agents in simulation environments.
However, deploying MAPF solvers in practical applications,
such as automated warehouses, can result in large gaps be-
tween planned and achieved solution costs. This is because
MAPF solvers employ a simplified model in which each
agent moves without considering their orientation and with-
out considering turning costs. Figure 1 shows the gap; the
blue line represents the optimal plan assuming turning is
free. These plans can be converted to executable plans with
turning costs by treating the turn actions as delays (see (Ma,
Kumar, and Koenig 2017)) which gives the orange line. Di-
rectly planning with turn actions, the green line, is a clear
improvement, deserving of further investigation.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Example of an Amazon Robotics drive unit.

20 25 30 35 40
Number of Agent

1500

2000

2500

3000

3500

Av
g 

Su
m

 o
f C

os
t

Free Turning Cost
Turning as Delay
Direct Planning 
 with Turning

(b) Achieved costs for different planning models.

Figure 1: 1(a) shows typical operations in an automatic
warehouse. Robots have an orientation (facing direction),
and need to perform turn actions. 1(b) compares objective
values for three different planning methods, on a synthetic
warehouse domain with different numbers of agents.

Approaches for planning with turn actions have appeared
in the literature. One idea involves the use of state lat-
tices; e.g., (McNaughton et al. 2011; Cohen et al. 2019;
Pivtoraiko, Knepper, and Kelly 2009), to model agents that
can rotate while moving (e.g., automated forklifts). Unfor-
tunately, this model is not appropriate for warehouse set-
tings, where rotations take the form of separate in-place ac-
tions. In some recent works, researchers have attempted to
incorporating kinematic constraints, including turning cost,
directly into MAPF planning for Multi-Agent Pickup and
Delivery (MAPD) problem (Ma et al. 2019) and solver
MAPF. These approaches more closely resemble real ware-
house applications. The problem they aim to solve involves
adding kinematic constraints and considering task alloca-
tions, which has made it challenging to compute plans. To
address this, their solver uses a prioritized strategy to plan
paths, but this approach may not provide solution quality
guarantees. Other approaches, such as (Varambally, Li, and

Proceedings of the Sixteenth International Symposium on Combinatorial Search (SoCS 2023)

119



Koenig 2022; Hönig et al. 2019) focus on direct planning
with additional uniform-cost actions, such as turning and
attaching or detaching to/from shelves. They design algo-
rithms based on modifications to an existing bounded sub-
optimal MAPF algorithm, called ECBS (Barer et al. 2014).
Unfortunately, because no optimal method exists, the opti-
mality gap of these plans is unknown. Also unknown is the
relative difficulty of directly computing optimal plans for
these extended models vs. conventional MAPF.

In this paper, we study optimal MAPF with Turn actions
(MAPFT ), where we model turning as a separate unit-cost
action. Although the problem has previously appeared in
the literature, to the best of our knowledge this is the first
approach that solves it optimally. First, we show how to
adapt and generalise CBSH2-RTC (Li et al. 2021), a state-
of-the-art optimal MAPF algorithm, to CBS with turn ac-
tions (CBST ) to solve MAPFT . Next, we show that MAPFT

is substantially more challenging than MAPF. We then de-
scribe how to adapt a range of recent enhancements, origi-
nally developed for MAPF, to improve its performance. Fi-
nally, we show that CBST can generate new types of re-
dundant high level nodes; ones that define sub-problems ap-
pearing elsewhere in the search tree. We introduce a novel
pruning approach, based on logical subsumption, which de-
tects and eliminates these nodes. Experimental results indi-
cate this approach can avoid substantial amounts of dupli-
cated work and we report convincing runtime improvements
for CBST . The same kind of redundant nodes also arise in
standard MAPF, though less frequently, and we show how
the same ideas can also improve performance there.

Problem Definition
In this paper, we consider each agent to have an orienta-
tion and need to perform turn actions. We call this prob-
lem MAPFT . It is defined as follows. Input: The input is
an undirected gridmap G = (V,E) and a set of k agents
{a1...ak} each with start state si and goal state gi. Time is
assumed to be discretized into timesteps. At each timestep,
each agent has a state and takes a single action to transit to
another state. State: The state for an agent is a triple (v, t, θ)
containing the current timestep t, the vertex v ∈ V occu-
pied by the agent at this time and the current orientation
θ ∈ {North, South,East,West}. Action: Each action
has a unit cost. Each agent has four possible actions: moving
forward to the next cell (assuming it is not blocked), turning
left by 90◦, turning right by 90◦, and waiting at the current
location. Conflict: A conflict occurs when two agents ai and
aj occupy the same vertex v ∈ V at the same timestep t,
called vertex conflict denoted ⟨ai, aj ,v,t⟩ , or two agents ai
and aj pass through the same edge e ∈ E in opposite direc-
tions at the same timestep called edge conflict denoted ⟨ai,
aj , e,t⟩. Cost: The cost of a path li is the sum of timesteps
that transit agent ai from the start state to the goal state.
Solution: A solution in MAPF is a set of feasible action se-
quences that can transit the given set of agents from start ver-
tex, start orientation to goal vertex, goal orientation without
any conflict. Objective: The objective is to find a feasible
solution with the minimal sum of individual costs of agents.

Conflict-Based Search
Among the most popular and effective methods for opti-
mal MAPF is CBS (Sharon et al. 2015). This is a two-level
search algorithm. Low level search: At the low level, CBS
invokes a single-agent search algorithm with both time and
space dimensions considered to find the optimal path for
each agent that satisfies all its constraints given by the high
level search while ignoring other agents. High level search:
At the high level, CBS performs best-first search on a binary
search tree called the constraint tree (CT). Each node N in
the CT contains a set of CBS constraints (N.const), a MAPF
solution (N.solution) that satisfies N.const and the sum of
the solution cost N.cost. Basically, it maintains a priority
queue of the unexplored nodes and selects the nodes from
CT with the lowest N.cost to expand first. CBS first gener-
ates the root node of the CT from the initial low level search
with no constraints. Then, it finds all existing conflicts be-
tween pair of agents in the current solution and chooses a
conflict to resolve. When a conflict between ai and aj is
chosen to resolve, the high level search generates two suc-
cessors N.left and N.right. In each successor, CBS adds a
constraint that prohibits one agent from being at a vertex or
using an edge at the conflict timestep to prevent the chosen
conflict. Then, each child node C runs a low-lever solver
with the new constraint C.new to find a new plan for the
affected agent C.agent which is one of ai or aj . After re-
planning, the successors are inserted into the priority queue.
CBS iteratively selects candidates from the priority queue,
splits a node to create two children to resolve conflicts, and
inserts them into the priority queue until it selects a candi-
date from the priority queue with no conflicts.

From CBS to CBST

Adapting CBS to the MAPFT problem is in principle a sim-
ple process, involving modifications to the state and graph
expansions based on the MAPFT action model in low level
search. However, the turning cost in MAPFT means optimal
solutions are usually found deeper in CBS’s CT. Since the
size of the CT is exponential in the depth of the optimal plan,
the resulting algorithm is unlikely to perform well. Thus, we
must also adapt a range of recent enhancements developed
in recent years to improve the performance of CBS.

Prioritisation (PC)
CBS selects which conflict to split and resolve. This pro-
cess is crucial, as different choices significantly influence
the number of high level node expansions in CBS. Boyarski
et al. (2015) classify and prioritise conflicts based on three
types. A conflict C is: (1) cardinal if replanning for both
agent to resolve C increases both their cost; or (2) semi-
cardinal if replanning for both agents increases the cost for
exactly one of them; or (3) non-cardinal if replanning for
both agents increases the cost for neither.

The state-of-the-art approach relies on Multi-Valued De-
cision Diagrams (MDD) (Sharon et al. 2013) to determine
the conflict type. An MDD for an agent a in a CT node N
is a rooted directed graph that represents all optimal paths
subject to the set of constraints N.const. Each location v

120



reached at timestep t on an optimal path is represented by an
MDD node (v, t) that is at depth t. If there is a single MDD
node (v, t) at depth t, and a constraint is added that prevents
it from being at v at timestep t, then all current optimal paths
become infeasible, which results in a cost increase. Given
this, an MDD can efficiently identify the conflict type.

MDDs in CBST work as in CBS, except that (1) paths
come from the modified low level search, (2) MDD nodes
record the state (v, t, θ), and (3) to identify a cardinal con-
flict, we count the number of locations at a given depth. This
is because multiple nodes with the same location and dif-
ferent orientations can exists at a same depth. Counting the
number of MDD nodes, as in CBS, still works, but fail to
identify some cardinal conflicts.

Heuristic Estimators
An important ingredient for the performance of CBS is high
level heuristics that estimate cost increases along the current
branch before all conflicts are resolved. The WDG heuris-
tic (Li et al. 2019a) is one such popular and leading estima-
tor. For every conflicting pair of agents, WDG solves a two-
agent MAPF problem, and then uses their combined cost
to build an eponymous Weighted Dependency Graph. The
graph is then used to compute an admissible estimate. As
the WDG heuristic acts only on the high level search, it can
be directly adapted to MAPFT .

Symmetry Breaking
For an efficient search, symmetries need special handling
when a pair of agents have many equivalent optimal indi-
vidual paths, but they all conflict with each other. Symmetry
breaking plays a crucial role in scaling MAPF. Three com-
mon symmetries: target symmetries, rectangle symmetries
and corridor symmetries are identified and handled directly
in (Li et al. 2021) leading to significant performance im-
provements. As shown in Figure 2, pairwise symmetries also
exist in MAPFT . The existing target reasoning and rectangle
reasoning can be straightforwardly enabled in CBST , but for
corridor reasoning in MAPFT , the cost of turnings matters
when calculating the constraints, so we show how to modify
corridor reasoning to generate more accurate constraints.

Corridor Reasoning A corridor is a chain of connected
vertices, each of degree 2, and the two endpoints of this
chain. The endpoint ei is the first vertex that agent ai exits
the corridor. The corridor length, denoted as k, is the map
distance between two endpoints. Corridor conflicts happen
when two agents travel the corridor in opposite directions
at the same time. For each agent, it must either wait for the
other agent to fully traverse the corridor and then enter the
corridor, or take an alternate path not using the corridor to
reach the endpoint. Corridor reasoning technique resolves
corridor conflicts by generating range constraints on end-
points (⟨ai, ei, [t0, t1]⟩), which disallows each agent to stay
at the endpoint from timestep t0 to timestep t1.

We denote the shortest path cost that a agent ai travel from
the start to its corridor endpoint ei as ti(ei), and the shortest
path cost ai travel from start to ei that not crossing the corri-
dor as t

′

i(ei). In Figure 2(c), if a1 traverses the corridor after

(a) Target (b) Rectangle

(c) Corridor

Figure 2: Pairwise symmetries in MAPFT . 2(a) incurs a tar-
get conflict that a1 traverses g0 after a0 arrived. 2(c) is a
corridor conflict that two agents travel the corridor from B2
to F2 at the same time. 2(b) is a rectangle conflict that all
shortest path of these two agents conflict in the yellow area.

a0 fully passing it, the earliest timestep that a1 reach e1 is
t0(e0)+k+1. If a1 has a route to e1 not crossing the corridor
and arriving at t

′

1(e1), the earliest timestep for a1 to reach e1
is min(t

′

1(e1), t0(e0)+k+1), and hence, a1 cannot be at e1
from timestep 0 to min(t

′

1(e1)− 1, t0(e0) + k). Similar for
a0, if it allows a1 traverse the corridor first, then it cannot be
at e0 from timestep 0 to min(t

′

0(e0) − 1, t1(e1) + k). The
constraints are: ⟨a0, e0, [0,min(t

′

0(e0)− 1, t1(e1)+ k)]⟩ on
one branch and ⟨a1, e1, [0,min(t

′

1(e1)− 1, t0(e0)+ k)]⟩ on
the other branch.

In MAPFT , we further consider two kinds of turning
costs. First, the turning cost are paid when the corridor is
not a straight line. Simply using the corridor length k could
underestimate the travel time to cross the corridor. There-
fore, instead of adding k in the range constraints, we add the
travel time between two endpoints, denoted as dist(e0, e1)
in which turning cost is considered. Second, the cost of one
agent leaving the endpoint may differ depending on the next
vertex the agent intends to enter. In Figure 2(c), if a1 waits
for a0 to travel the corridor first, then a0 can leave e0 for-
ward to A2, or take one extra timestep to turn left at e0 and
forward to B3. If a0 chooses forward to A2, then a1 can only
wait at B1 or B3 to enter the corridor from e0, and needs an
additional cost of turning at e0 to traverse the corridor. As a
result, one agent needs to have one additional turning cost at
the intersection B2.

The existing corridor reasoning generates inefficient
range constraints as it ignores the turning cost, so the
search will select nodes that are still infeasible because
of the inefficient constraint before exploring the more
promising nodes. This constraint can be easily improved
to be more efficient by calculating the turning cost. There-
fore, we modified the constraints by adding the addi-
tional cost due to the additional turn actions, which are
⟨a0, e0, [0,min(t

′

0(e0) − 1, t1(e1) + dist(e0, e1) + 1)]⟩
on one branch and ⟨a1, e1, [0,min(t

′

1(e1) − 1, t0(e0) +

121



(a) MAPF instance (b) MAPFT instance

Figure 3: Target corridor conflict in MAPF and MAPFT .

dist(e0, e1) + 1)]⟩ on the other branch.
Corridor-target Reasoning Corridor-target conflicts oc-

cur when two agents have corridor conflicts and the target
vertex of one agent is inside the corridor. We find that the
existing corridor-target reasoning technique (Li et al. 2021)
may not always solve this problem in one split, even in
MAPF instances. As an example of the limitations of the
current strategy and our modifications to close the gap, we
present Figure 3. Since the goal g0 of a0 is inside the corri-
dor, agent a0 can either keep its current path while a1 reach
its goal using a bypass that does not use the corridor, or
reaches its goal after a1 traverses the corridor. Let the path
cost for a0 that reaches its goal after waiting for a1 to tra-
verse the corridor be denoted as l, and let the cost for a1 that
reaches its endpoint e1 using a bypass that does not use the
corridor be t

′

1(e1). Then the resulting constraints on the two
branches are l0 ≤ l, ⟨a1, e1, [0, t

′

1(e1)− 1]⟩ and l0 > l.
In MAPF, as shown in Figure 3(a), when calculat-

ing l in the existing method, there are two cases that
a0 enters the corridor: (1) from e1 (the dotted orange
line), and (2) from e0 (the solid orange line). For (1),
a0 should enter the corridor from e1 after a1 travels the
corridor and leaves e1. Then, the minimal time for a0 to
reach g0 is max {t0(e1), t1(e1) + 1} + dist(e0, g0). For
(2), similarly, the minimal time that a0 reaches g0 is
max {t0(e1), t1(e0) + 1} + dist(e0, g0). Combining case
(1) and (2), l = mini=0,1{max(t0(ei) − 1, t1(ei)} +
dist(ei, g0). In case (2), if a0 enters the corridor and reaches
the goal from e0, it needs to first travel the corridor from e1
to e0 and leave e0. Then, it needs to reenter e0 after a1 enters
e0 to travel the corridor. The current limitation is that the cost
for a0 to reach e0 (t0(e0)) is the first time that a0 arrives at
e0 in the existing method, which does not consider the cost
of leaving and reentering the corridor. As a result, is the ad-
ditional cost of leaving and reentering is not considered, the
resulting constraints may not solve this example in one split.
Therefore, we further refine case (2) to two sub-cases: (2.a)
agent a0 enters from e0 using a bypass that does not traverse
the corridor, which does not require reentering the corridor,
the cost to reach e0 is t

′

0(e0); (2.b) a0 enters the corridor
from e1 to e0, and uses at least 2 timesteps to leave and reen-
ter, the cost to reach e0 is t1(e0) + 2. Combining (2.a) and
(2.b), the cost for a0 to reach e0 is min(t

′

0(e0), t0(e0) + 2),
and minimal path cost for a0 to reach its goal in case (2) is

k 5 10 15 20 25 30
CT node 183 1,288 5,073 14,772 34,869 71,054
time(s) 0.01 0.16 0.92 4.37 15.59 40.97

Table 1: CT node expansions and time on solving the follow-
up conflicts with CBST +Target reasoning of the type shown
in Figure 2(a) for different distance k between s0 and g0.

max{min(t
′

0(e0), t0(e0) + 2), t1(e0) + 2} + dist(e0, g0),
and l is the minimal between the path cost for a0 in case (1)
and the modified path cost in case (2).

We apply the same reasoning for MAPFT , with more cost
considered in l: (1) turning cost in dist(), including the turn-
ings when corridor is not a straight line and the turnings to
the goal orientation when agent reach the goal vertex; (2)
same as in corridor reasoning, the additional turning cost
when one agent leave the corridor and another agent attempt
to enter; (3) for case (2), we also need to consider that in
MAPFT , the cost of leaving a vertex and reentering it is
at least 4 due to turnings. Clearly, in case (1), the minimal
time for a0 to reach its goal is max {t0(e1), t1(e1) + 2} +
dist(e1, g0). In case (2.b), the minimal time a0 to reach goal
from e0 is min(t

′

0(e0), t0(e0)+4), so the minimal path cost
of a0 in case (2) is max{min(t

′

0(e0), t0(e0) + 4), t1(e0) +
2}+ dist(e0, g0).

Note that Varambally, Li, and Koenig (2022) consider turn
actions with a slightly different setting where agents are al-
lowed to turn 180◦ in one timestep. Our improvements can
also be easily adapted to this action model.

Follow-up Conflicts in Target Reasoning
We use the term follow-up to describe that new conflicts are
found between the same pair of agents after applying con-
straints to resolve a conflict between two agents. We observe
that unlike in MAPF, target conflict resolution may not pre-
vent follow-up conflicts at the target.

Just as for MAPF (Li et al. 2021), we generate two dis-
joint length constraints to resolve the target conflict. Sup-
pose agent aj reaches its goal gj at timestep tj and stays
there forever, while agent ai visits gj at timestep ti (ti ≥ tj),
the usual constraints applied to resolve this conflict are: (1)
lj > ti: aj can only finish after ai visits its goal. and (2)
lj ≤ ti: aj must finish its path by timestep ti, and other
agents cannot visit gj at any time equal or after ti.

Figure 2(a) is an example of the follow-up conflict in tar-
get reasoning. The target conflict occurs at vertex D2 at
timestep t = 3. On one branch, CBS constrain a0 to fin-
ish no later than 3; we generate a solution of cost 11, as a1 is
forced to divert around D2. On the other branch, CBS con-
strains a0 to finish later than 3; it will try to finish at 4, which
will still cause a conflict with agent 0, either at C2 at time
2, or D2 at time 3. Unlike MAPF, it has no length 4 path to
D2 that gets out of the way of agent 1. Hence, resolving the
target conflict requires more conflicts to be resolved, and if
we are not careful, we may try to simply resolve the conflict
at D2 at time 3 in the same way we already did.

This kind of follow-up frequently happens when the short-
est paths of two agents are in the same row. Table 1 demon-

122



Figure 4: CT tree for the problem instance in Figure 2(a).
To simplify the illustration, we give an initial constraint on
root and run CBST with target reasoning. The branch with
orange nodes leads to the optimal solution. Solid nodes are
expanded nodes labelled with cost, and edges are labelled
with constraints added. The constraints shown in red illus-
trate that different nodes encounter the same sub-problem
and generate the same constraints.

strates the impact that the follow-up problems can have on
solving time and CT node expansions. In the CT tree, we
observe that some constraints added in CT nodes may be re-
dundant, because the constraints added when splitting is not
disjoint. This redundancy also exists in the unexpected ex-
pansions in target follow-up conflicts, so we further develop
a pruning method to reduce the redundant expansions.

High level Search Node Pruning
CBS and CBST split nodes by adding constraints to resolve
conflicts. However, the splitting is not disjoint. There may be
solutions that appear in both child nodes of a parent. Disjoint
splitting (Li et al. 2019b) can be used for simple conflicts
but is too difficult to implement for rectangle and corridor
conflicts. While the set of constraints we generate in each
node in the CT tree is guaranteed to be different, it does not
mean we cannot generate one node that is redundant (can
only have a subset of solutions of) another node.

Redundant Nodes in High level Search
Consider Figure 4. Node N11, N101 and N1001 generate the
same splitting constraints. The constraints of node N1001

are: l0 > 4 ∧ ⟨a0, D2, 4⟩ ∧ ⟨a0, C2, 3⟩ ∧ ⟨a1, B2, 2⟩. For
node N101, they are: l0 > 4 ∧ ⟨a0, D2, 4⟩ ∧ ⟨a1, C2, 3⟩.

Now the constraint ⟨a1, B2, 2⟩ forces a1 not to be at B2
at time 2, and as a consequence, it cannot be at C2 at time
3, so ⟨a1, B2, 2⟩ implies ⟨a1, C2, 3⟩, written ⟨a1, B2, 2⟩ →
⟨a1, C2, 3⟩ . That means that any solution of the node
N1001 must also be a solution of N101. Similarly, because
⟨a1, C2, 3⟩ → ⟨a1, D2, 4⟩, N101 defines a sub-problem of
N11, and hence, N1001 is also a sub-problem of N11. This
shows that the exploration of N1001 and N101 would be re-
dundant efforts, as the same solutions exist under N11.

We say that a node N1 subsumes another node N2 if
N2.const → N1.const. In this case, we can safely remove
N2 from the nodes to be explored, since any solution will
still be available under N1. As shown in Table 2, eliminating

k 5 10 15 20 25 30
CT node 30 74 144 239 360 505
time(s) <0.01 <0.01 0.01 0.03 0.07 0.11

Table 2: CT node expansions and time on solving the follow-
up conflicts with CBST +Target reasoning + subsumption
pruning of the same experiments in Table 1.

subsumed nodes significantly reduces the number of expan-
sions in target follow-up problems. In this section, we show
a novel method that can be used in CBS and CBST to reduce
searching these redundant sub-problems This method works
by pruning high level search nodes and can be directly en-
abled with the existing advances.

Subsumption Identification
When expanding a CT node to resolve a conflict, for ex-
ample, a conflict ⟨a0, a1,v,t⟩, CBS generates two children,
the left child with constraint ⟨a0, v, t⟩, and the right child
with constraint ⟨a1, v, t⟩, which causes the solution that sat-
isfies ⟨a0, v, t⟩ ∧ ⟨a1, v, t⟩ is kept in both children. There-
fore, we want to prune the duplicate part in one child while
keeping this in another children by subsumption checking.
However, since the number of nodes in the CT tree can grow
very large, simply checking a new node against all exist-
ing nodes is too expensive. Therefore, to reduce the time
overhead on finding and checking subsumption, our method
checks against only some existing nodes.

We need to be careful when we eliminate a subsumed
node that we have not relied (implicitly) on the subsumed
node to allow the earlier subsumption of another node. To
avoid this problem we only allow subsumption of a node N
by a node that appears to the right of it in the tree (i.e. after it
in a depth-first left to right traversal of the tree). In this way
we can never subsume a node we have relied on by using
information of nodes to its left.

We introduce two properties that help us to check sub-
sumption of nodes.

Property 1. If a node N1 cannot subsume another node N2,
then any ancestor node of N1 also cannot subsume N2.

Proof. As node N1 cannot subsume node N2, by definition,
is N2.const ̸→ N1.const. Since any ancestor node n of N1

adds constraints to N1.const, hence N2.const ̸→ n.const
because N1.const ⊂ n.const.

Property 2. If a node N1 is a child of an ancestor A of node
N2 where N1.agent ̸= N2.agent then N1 cannot subsume
node N2 unless it also subsumes N2’s parent.

Proof. Suppose N1 subsumes N2 then N2.const →
N1.const. Let N3 be the parent of N2. Now all of N1,
N2 and N3 share all constraints of the common ancestor
A.const and N1.const = A.const ∧ N1.new since A is
its parent, while N2.const = N3.const ∧ N2.new. Now
N2.const → N1.const hence N2.const ≡ N3.const ∧
N2.new → N1.new. Suppose N2.new constrains a dif-
ferent agent then N1.new, then since all constraints only

123



Algorithm 1: CheckSubsumed(N )
1: INPUT: Node N
2: OUTPUT: return true if N can be subsumed by one of the right

children of its ancestors.
3: A← Root
4: while A ̸= N do
5: C ← A.right
6: if C is not an ancestor of N then
7: if C.agent = N.agent ∧ Subsume(C,N,N.agent)

then
8: return true
9: else

10: A← A.left
11: end if
12: else
13: A← A.right
14: end if
15: end while
16: return false

involve one agent, it must be the case that N3.const →
N1.new and hence N3 is subsumed by N1 since the remain-
ing constraints in N1 (A.const) are shared by N3.

Property 1 means that for a node N2 we only need to
check the children of its ancestor nodes for a possibly sub-
suming node N1, since N1’s descendants will only subsume
node N2 if N1 subsumes N2. We will not check all chil-
dren of ancestors, just the right children, in order to avoid
using a node to subsume another and then removing part of
its search space by subsumption possibly losing solutions.
Property 2 means that we only have to check children of an-
cestors on N1 which added a constraint on the same agent
as N1.

Algorithm 1 demonstrates the subsumption checking al-
gorithm. For each new node N as its created we call
CheckSubsumed(N ), if this returns true we dont insert the
node in the tree. The algorithm walks the ancestors A of N
from Root to n. If the right child C of an ancestor A is not
an ancestor of N and added a new constraint on the same
agent we check to see if it subsumes N , and if so return.
Otherwise we update A to be the next ancestor of N . If we
reach N the subsumption check fails.

What remains is how to compute the subsumption check
Subsume(N1, N2, a) which checks that N1 subsumes N2

with respect to the constraints on agent a. It is implemented
as follows. Since N1.parent.const ⊂ N2.const, so for the
last added constraint N1.new constraints agent a, we run
a low level search for a subject to N2.const to check if it
can violate N1.new. This amounts to checking if vertex v is
reachable at time t for a constraint resulting from a vertex
conflict ⟨a, a′, v, t⟩, or checking a disallowed edge e at time
t is reachable for an edge conflict, or any of the disallowed
barrier vertex/time points are reachable in the case of a bar-
rier constraint arising from rectangle or corridor reasoning.
For constraint N1.new arising from target reasoning we can
directly return false since the split is disjoint.

CheckSubsumed is efficient since for each node n we
only check a number of nodes less than its depth in the tree.

We only check subsumption on the new constraint agent
N.agent = C.agent. Because we only check the last added
constraint, the check is simply running a low level search
with a given timestep.

We now prove that the subsumption checking never loses
solutions.
Theorem 1. Removing nodes from the CT tree us-
ing CheckSubsumed never eliminates a solution P =
{p(a) | a ∈ {a1, . . . , ak}}.

Proof. We first show that every solution P in the pruned
node n must appear in the subsuming node C. Since C only
further constrains a = C.agent = n.agent, for each other
agent a′, p(a′) is a solution for A (since its a solution for n its
ancestor) and also for C. Now Subsume(C, n, a) succeeded
so all possible paths for a in node n do not violate C.new.

Second we need to show that the solution P will not be
pruned from the subtree under C, unless it appears elsewhere
in the CT tree. By the correctness of CBS solution P is never
removed by a CBS split (splits never remove any solution),
so P must appear as a solution of at least one descendent of
C say n’ at every level of its subtree. So the only way P can
disappear as a solution of the CT tree under C is if n’ is then
subsumed. Note this node n’ occurs to the right of n in the
CT tree. We can imagine a chain of subsumed nodes n, n’,
n”,... each holding solution P. But this chain must be finite
since each node appears further to the right of the previous
one in the CT tree, and the CT tree is finite. Hence there is
a node at the end of the chain which is not subsumed, and
shows that the solution P remains in the pruned CT tree.

Conflict Prioritisation Based on Pruning
Each node of the CT tree is processed in polynomial time,
therefore the reason why CBS is an exponential-time algo-
rithm is that the CT tree can itself have an exponential size.
Because the size of the tree depends on the choices of con-
flicts resolved at each node, improving the splitting choice
has a high potential for runtime improvements.

Earlier in the paper we introduce pruning, which offers
a way of reducing the size of the CT tree. Current pruning
works only by chance that we create a node that can sub-
sume or be subsumed by another. The novelty we suggest
now, in combination with pruning, is to not leave this en-
tirely to chance, but rather to choose to resolve conflicts if
they are more likely to lead to pruning. In order to do this,
when choosing a conflict to resolve, we prioritise conflicts
that have been resolved previously in the tree, to increase the
probably that descendants of the current node can trigger a
subsumption. We break ties using the previous prioritisation
based on cardinality.

Experiments
The implementation is programmed in C++ and based on
heuristics, prioritisation and symmetric reasoning of Li et al.
(2021) and the modifications to existing advances and prun-
ing method are made on top of it. 1 We denote by PCRTC
only modification to the low level search in CBST (with

1Code is at https://github.com/YueZhang-studyuse/MAPF T

124



10 15 20 25 30
Number of Agent

200

400

600

800

1000

Av
g 

Su
m

 o
f C

os
t

Random

10 15 20 25 30 35 40 45 50
Number of Agent

400

800

1200

1600
Empty

10 12 14
Number of Agent

200

400

600

800

1000

1200 Room

10 15 20 25 30 35 40 45 50
Number of Agent

2000

4000

6000

8000

10000

12000

City

10 15 20 25 30 35 40 45 50
Number of Agent

2000

4000

6000

8000

10000

Game

Figure 5: The same experiments as in Figure 1 in other five domains.

10 20 30 40
Number of Agent

20

40

60

80

100

Su
cc

es
s R

at
e(

%
)

Random 

MAPF
MAPFT

10 30 50
Number of Agent

20

40

60

80

100
Warehouse

MAPF
MAPFT

10 30 50 70
Number of Agent

20

40

60

80

100
Empty

MAPF
MAPFT

10 15 20
Number of Agent

20

40

60

80

100
Room

MAPF
MAPFT

10 30 50 70
Number of Agent

20

40

60

80

100
City

MAPF
MAPFT

10 30 50 70
Number of Agent

20

40

60

80

100
Game

MAPF
MAPFT

Figure 6: Success rate between CBS with PCRTC and CBST with PCRTC.

WDG heuristic, prioritisation modification (1),(2) in Sub-
section Prioritisation (PC) and unmodified symmetric rea-
soning) which we consider as baseline. We denote by
PRCTC2 our CBST with improved prioritisation and cor-
ridor reasoning, and our high level node pruning as -P.
The experiments are conducted on a server with 16 VCPUs
and 32GB RAM. We do experiments on six different maps
in different domains using grid-based MAPF benchmarks
from Stern et al. (2019), including random-32-32-20 (de-
noted Random), warehouse-10-20-10-2-1 (denoted Ware-
house), empty-32-32 (denoted Empty), room-64-64-16 (de-
noted Room), Paris 1 256 (denoted City) and den520d (de-
noted Game). For each map, we use all 25 random scenario
files from the benchmark sets of the chosen map for the ex-
periments. As for the number of agents, for Room, since the
success rate is observed to decline significantly when the
number of agents is set to 20, we start the number of agents
at 10, increasing by 1 for this specific map. For the other 5
maps, we start the number of agents at 10, increasing by 5.
For each number of agents, we solve all 25 instances. In or-
der to ensure replicability, for each instance, we assign the
start and target direction to be North. The runtime limit is
set to 60 seconds for each instance. For the failed results,
the runtime is set to be 60 seconds.

Experiment 1: Solution Quality in other domains
through direct turning planning. We conduct experiments
as in Figure 1 in five additional domains. We note that
the post-execution method incurs negligible time overhead
(≤ 0.01s per instance), and direct planning with turn ac-
tions may result in longer planning time than leaving it to

the post-processing phase, which could also be indicated
from Experiment 2. We believe that the improved solution
quality, as presented in Figure 5, justifies the extra computa-
tional effort, and our improvements could also help reduce
the computational challenge incurred by direct planning.

Experiment 2: Investigating the Challenges of MAPFT

Even with modern enhancements, MAPFT problem remains
challenging. In Figure 6, we present experimental results
comparing success rates. The results indicate that, for all
MAPFT instances in all domains, the success rate of PCRTC
drops significantly as the number of agents increases when
compared to CBS solving the simpler MAPF problem.

Experiment 3: Our improvements in MAPFT . Ta-
ble 3 shows the performance of PCRTC2, PCRTC+P and
PCRTC2+P compared to PCRTC, including the number of
instance solved, the total runtime and the pruning overhead.
Our experiments demonstrate that, compared to PCRTC,
pruning (PCRTC+P) results in better runtime and more in-
stances solved in all domains. PCRTC2 performs better on
solved instances in City, Random, and Empty maps, and has
significant improvements on Room maps. In maps where
PCRTC2 outperforms PCRTC, PCRTC2+P further signif-
icantly improves the number of instances solved. Our re-
sults also show that subsumption checking only accounts for
around 1% of the total runtime for each type of map.

We also observe that: (1) PCRTC2+P does not always per-
form well on runtime compared to PCRTC+P; (2) PCRTC2
solves less instances than PCRTC in some domains; (3) our
improvements on large maps, like Warehouse, Game and
City, are not as significant as that on smaller maps. To the

125



Number of Instances Total Runtime(all failed excluded)

Map Total PCRTC ∆Solved Compared to PCRTC PCRTC Speedups Compared to PCRTC Pruning

Attempts Solved PCRTC2 PCRTC+P PCRTC2+P Total Runtime(s) PCRTC2 PCRTC+P PCRTC2+P Overhead

Random 175 133 +8 +6 +13 1225.76 x1.83 x1.64 x2.23 1.68%
Warehouse 275 256 -9 +4 -4 1432.15 x0.71 x1.15 x1.04 0.07%

Empty 325 293 +11 +19 +21 1904.36 x1.5 x1.86 x1.6 0.5%
Room 275 167 +46 +23 +62 4552.31 x2.24 x1.29 x2.15 1.59%
City 375 338 +5 +9 +11 2310.04 x1.09 x1.21 x1.09 0.4%

Game 325 285 -4 +8 +3 2975.93 x0.87 x1.16 x1.09 0.37%

Table 3: Improvement results. Column 4-6 is the difference on number of solved instances compared to PCRTC. ∆Solved =
Total Solved of the given solver - Total Solved of PCRTC. Column 7-11 shows runtime on the instances excluding those where
all methods failed, i.e. including instances solved by at least one solver. We set failed instance’s runtime to the runtime limit
(60s). Column 8-10 shows the runtime speedups compared to the PCRTC. We divide the PCRTC total runtime by total runtime
of the given solver to compute speedup. Column 11 is the pruning overhead for PCRTC2+P on all instances (including failed),
which is the percentage of time spent on subsumption checking relative to the total runtime.

1x

2x

5x
10
x

577

997

10 3 10 2 10 1 100 101 102

PCRTC2 Runtime(s) in MAPFT

10 3

10 2

10 1

100

101

102

PC
R

T
C

2+
P 

R
un

tim
e(

s)
 in

 M
A

PF
T

(a) Runtime

1x
2x

5x
10
x

144

495

100 101 102 103 104 105

PCRTC2 Expansion in MAPFT

100

101

102

103

104

105

PC
R

T
C

2+
P 

E
xp

an
si

on
 in

 M
A

PF
T

(b) Node Expansion

Figure 7: Scatter plot for runtime in seconds and node ex-
pansion for pruning comparison in MAPFT instances. If an
instance is not solved within the time limit, we set its runtime
to 60s and node expansions to 105. We compare PCRTC2+P
with PCRTC2. For each node in the plot, the x coordinate
is the runtime on PCRTC2, and the y coordinate is the run-
time on PCRTC2+P. The number in the left corner shows the
number of instances that PCRTC2 outperforms PCRTC2+P,
while the number in the right corner is the number of in-
stances that PCRTC2+P outperforms PCRTC2

best of our knowledge, we identify three problems for future
improvements: (1) generating new range constraints incurs
runtime overheads; (2) low level search runtime on large
maps is sometimes the major cause of the performance and
(3) identifying cardinal conflicts and resolving them first, as
in PCRTC2, may not be the best strategy for MAPFT .

Experiment 4: Improved search efficiency through
subsumption pruning. Figure 7 shows pruning improve-
ments in a total of 1550 instances. Our results indicate that
pruning saves significant search effort and outperforms no
pruning in almost all cases. In addition, pruning also helps in
MAPF problems, so we also conduct experiments in MAPF
instances. Since CBS can solve MAPF problems with more
agents compared to MAPFT , we increase the number of
agents to solved in experiments on MAPF with a total num-
ber of 3025 instances including: 20-70 agents in Random,

1x

2x

5x
10
x

1138

2046

10 3 10 2 10 1 100 101 102

Standard Runtime(s) in MAPF

10 3

10 2

10 1

100

101

102

O
ur

s R
un

tim
e(

s)
 in

 M
A

PF

(a) Runtime

1x194

662

2x

5x
10
x

100 101 102 103 104 105

Standard Expansion in MAPF

100

101

102

103

104

105

O
ur

s E
xp

an
si

on
 in

 M
A

PF

(b) Node Expansion

Figure 8: Scatter plot of runtime and expansions for pruning
comparison in MAPF instances. We denote CBS + WDG
heuristic + PCRTC as Standard, and compare with enabling
pruning in standard and denote it as Ours. For timeout in-
stances, we have the same settings as in Figure 7.

20-140 agents in Warehouse, 20-140 agents in Empty, 15-50
agents in Room, 20-150 agents in Game and 20-200 agents
in City. For each map, we increase the number of agents by
5. Figure 8 shows our pruning also improves the runtime
and node expansions in MAPF. In summary, for MAPF in-
stances, in the instances solved by at least one solver, our
pruning method achieved around 1.41 times speedup.

Conclusion and Future Work
We show the benefits of direct planning with turn actions in
MAPF, called MAPFT , and adapt the existing state-of-the-
art algorithm to solve planning with turn actions optimally.
While MAPFT increases the difficulty to solve because turn-
ing is not free, this research also proposes a novel method
to speed up runtime and reduce node expansions. As for fu-
ture work, we address two current limitations. First, we have
not yet explored non-uniform-cost turns and other kinematic
constraints, such as the model proposed in (Ma et al. 2019),
which is an interesting aspect for future work. Second, as
shown in experiments, more speedups need to be considered
such as reducing overheads and changing splitting strategy.

126



Acknowledgements
This work is supported by the Australian Research Council
under grant DP200100025, and by a gift from Amazon.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of the
Seventh Annual Symposium on Combinatorial Search, 19–
27.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin,
D.; Betzalel, O.; and Shimony, E. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfind-
ing. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, 740–746.
Cohen, L.; Uras, T.; Kumar, T. S.; and Koenig, S. 2019. Op-
timal and bounded-suboptimal multi-agent motion planning.
In Proceedings of the Twelfth Annual Symposium on Combi-
natorial Search, 44–51.
Dresner, K.; and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of artificial
intelligence research, 31: 591–656.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and robust execution of mapf
schedules in warehouses. IEEE Robotics and Automation
Letters, 4(2): 1125–1131.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for multi-agent path finding
with conflict-based search. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, 442–449.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.;
and Koenig, S. 2019b. Disjoint splitting for multi-agent
path finding with conflict-based search. In Proceedings of
the International Conference on Automated Planning and
Scheduling, 279–283.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.;
and Koenig, S. 2021. Pairwise symmetry reasoning for
multi-agent path finding search. Artificial Intelligence, 301:
103574.
Ma, H.; Hönig, W.; Kumar, T. S.; Ayanian, N.; and Koenig,
S. 2019. Lifelong path planning with kinematic constraints
for multi-agent pickup and delivery. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
7651–7658.
Ma, H.; Kumar, T. S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In Proceedings of the AAAI
Conference on Artificial Intelligence, 1, 3605–3612.
McNaughton, M.; Urmson, C.; Dolan, J. M.; and Lee, J.-W.
2011. Motion planning for autonomous driving with a con-
formal spatiotemporal lattice. In Proceedings of the 2011
IEEE International Conference on Robotics and Automa-
tion, 4889–4895.
Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. Journal of Field Robotics, 26(3): 308–333.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial intelligence, 195: 470–495.
Silver, D. 2005. Cooperative pathfinding. In Proceedings of
the aaai conference on artificial intelligence and interactive
digital entertainment, 1, 117–122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Proceedings of the Twelfth Annual Sym-
posium on Combinatorial Search, 151–158.
Varambally, S.; Li, J.; and Koenig, S. 2022. Which MAPF
model works best for automated warehousing? In Pro-
ceedings of the International Symposium on Combinatorial
Search, 1, 190–198.

127


