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A B S T R A C T

The primary objective of this paper is to aid game developers in finding the most suitable pathfinding algorithm
for their games. Despite recent advancements in this field, there are few available studies that can be compared
due to the absence of a standard benchmark set for weighted environments. This paper presents a new dataset
for pathfinding in weighted environments. Furthermore, an investigation was conducted into the impact of
node weights on pathfinding speed, and a correlation between them was identified. The complexity added
to the maps due to node weights was defined as weight complexity, and two metrics were introduced to
estimate it. The weight correlation factor has been identified as the most effective metric for estimating the
weight complexity of the map. Another contribution of this paper pertains to the development of a model for
estimating the pathfinding speed of algorithms based on weight complexity. This was accomplished through
the utilization of the non-linear least squares method, which was applied to create a model for each algorithm,
considering both its average search time and weight correlation factor values associated with the map. Finally
an overall score metric was developed by using the integral of the models, enabling the evaluation of different
algorithms in various scenarios.
1. Introduction

Pathfinding in grid maps is a fundamental problem in various fields
such as artificial intelligence, robotics, and computer games. A large
number of algorithms have been proposed to tackle this problem.
However, their evaluation has been primarily based on traditional
benchmarks which usually do not support weighted nodes. In the
field of pathfinding, benchmarking is a crucial task to evaluate the
performance and effectiveness of different algorithms. Currently, stan-
dardized datasets are commonly used for benchmarking, which consist
of grid maps(usually with uniform cost nodes) with pre-defined start
and target locations. These datasets are designed to provide a variety
of conditions and challenges, such as different map topologies, varying
densities of obstacles, and multiple targets. The algorithms are evalu-
ated based on the quality of the solution, including path length and
optimality, as well as the computational resources required to find the
solution, such as runtime and memory usage. pathfinding speed is often
considered the most important metric. In particular, real-time applica-
tions such as video games and robotics require pathfinding algorithms
that can quickly generate high quality paths. However, it is important
to note that the majority of existing datasets only consider nodes
as either passable or impassable, and do not support node weights
in the grid map. However, in numerous scenarios nodes may have
varying weights that can change during the search process. Therefore,
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it is crucial to develop new datasets that can serve as benchmarks
for pathfinding algorithms capable of effectively accounting the node
weights in the environments. These datasets will enable researchers
to evaluate and compare the performance of pathfinding algorithms
in realistic scenarios, leading to more efficient and effective solutions
for complex pathfinding problems. In this regard, a novel dataset is
proposed for evaluating pathfinding algorithms in gridmaps where
nodes possess weights. In this research, it was observed that adding
weights to grid cells can slow down grid pathfinding algorithms, a
phenomenon referred to as weight complexity. This term is introduced
in this paper to characterize the observed impact on algorithmic perfor-
mance, providing a novel framework for understanding the distribution
of weights across gridmaps. By utilizing these metrics, researchers can
gain valuable insights into the factors that affect the performance of
pathfinding algorithms and develop more effective approaches for solv-
ing the pathfinding problem in weighted gridmaps. Finally, a scoring
system is presented to rank algorithms based on their performance on
the proposed dataset. Our method paves the way for further exploration
in this field by offering a comprehensive and realistic evaluation of
pathfinding algorithms in weighted grid maps.

This paper presents several contributions in the field of pathfinding.
Firstly, it introduces a novel approach for generating a weighted map
dataset based on existing uniform cost maps. This approach enables
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the evaluation of pathfinding algorithms in various weighted scenarios.
Secondly, it proposes a metric to quantify the complexity of a given
map by considering its characteristics, such as the number of obstacles
and the distribution of weights. Thirdly, the paper presents a novel
approach to develop a mathematical model for evaluating the perfor-
mance of algorithms across varying levels of map weight complexity.
Fourthly, it performs a comparative analysis of multiple existing algo-
rithms using the generated dataset and utilizes the developed models.
Finally, the paper proposes an overall scoring system that facilitates
easy and effective comparison of different algorithms in this domain.
Together, these contributions provide a comprehensive framework for
evaluating and comparing pathfinding algorithms in gridmaps with
weighted nodes.

2. Related works

In the field of path finding, benchmarking refers to the process of
evaluating and comparing the performance of different algorithms or
techniques for finding optimal paths in graphs or maps. It involves
running these algorithms on various test cases or datasets and mea-
suring their efficiency in terms of factors like runtime, memory usage,
solution quality, or other relevant metrics. Our objective is to establish
a standardized dataset to assess the performance of pathfinding algo-
rithms and develop a comprehensive scoring system that can be utilized
for evaluating the quality of using pathfinding algorithms in various
computer games. Having a standard dataset is important for compar-
ing pathfinding algorithms that can work in weighted environments.
However, the number of maps in existing datasets with multiple types
of land is limited and not diverse enough to enable a comprehensive
evaluation. To provide an example, Stuartvent’s dataset includes maps
taken from popular games such as Warcraft and Starcraft, which feature
up to four different terrain types (Sturtevant, 2012). This enables the
testing of pathfinding algorithms in weighted conditions by assigning
varying weights to different terrain types. Although these maps can be
used in weighted conditions, the number of such maps is very small
and 2–4 types of weights are not enough for a thorough comparison.
There are numerous applications in which incorporating weight into
nodes can prove to be beneficial. In video games, for instance, there
could be various terrain types, and the speed of an agent traversing
each of them could differ. Additionally, if a map features varying
altitudes, ascending to a higher altitude may cause more difficulty
for the agent. In such cases, including weight into the nodes during
pathfinding can help. Furthermore, a common issue that arises in many
games is that agents tend to move alongside walls in narrow corridors,
which is not realistic. Assigning a higher weight to nodes situated
near the sides of the corridor, using influence maps and potential
fields (Jong, Kwon, Goo, & Lee, 2015), can help the agent move away
from the walls and towards the center of the corridor. The use of a
weights for nodes in a game can potentially improve pathfinding and
enhance artificial intelligence, thereby contributing to a more realistic
and immersive gaming experience. Another dataset developed for the
DTA paper includes 16 terrain types (Sturtevant, Sigurdson, Taylor, &
Gibson, 2019), but it only contains 20 maps and, on average, uses six
different weights in each map and all pieces of terrain less than 80
pixels have been removed during the dataset’s pre-processing (Sturte-
vant et al., 2019). Additionally, the weight of each terrain type in the
dataset was not specified and was randomly assigned for each test. This
inconsistency in weight allocation can make it difficult and inappropri-
ate to compare benchmarks. The lack of precise weight information can
result in misleading and unreliable results. Therefore, it is important to
establish a consistent weight distribution to ensure the accuracy and
validity of the results and to facilitate benchmark comparison across
different studies. Furthermore, One significant limitation of this dataset
is that it considers all map nodes as passable and does not include
any impassable nodes, which can be a major drawback for evaluating
2

the performance of pathfinding algorithms in realistic scenarios where
obstacles and restricted areas need to be considered (Sturtevant et al.,
2019). Stern et al. aimed to establish a standardized benchmark for
multi-agent pathfinding problems, To accomplish this, they gathered a
collection of maps from different trusted sources (Stern et al., 2019).
They used Dragon Origin maps (Sturtevant, 2012), 𝑁 × 𝑁 grids with
random obstacles (Standley, 2010) and Warehouse grids (Cohen et al.,
2018). Iron Harvest is another benchmark in pathfinding field (Hara-
bor, Hechenberger, & Jahn, 2022). It presents a novel benchmark for
evaluating pathfinding algorithms by providing multiple map represen-
tations, including grid, mesh, and obstacle-set for 35 different maps.
This allows for comparison of algorithms that work on different types of
maps, and provides a comprehensive evaluation of their performance.
By offering a common set of challenging instances, the benchmark
helps researchers and practitioners better understand the strengths and
weaknesses of different pathfinding techniques. It is worth noting that
Iron Harvest’s benchmark is limited to uniform cost gridmaps, which
may not be suitable for scenarios where the weight of the nodes is an
important factor in pathfinding. To create a standard dataset that can
be used to analyze the weight complexity of the maps, it is essential
to include maps with the same main skeleton (i.e., passable and im-
passable points) and scenarios in different versions, each with different
weight distribution. This way, the impact of the weight complexity
on pathfinding speed can be appropriately evaluated, which will be
further explained in detail in the following sections. The table presented
in 1 provides a comparative analysis of the attributes associated with
well-known pathfinding benchmarks.

To test our dataset, the A* (Hart, Nilsson, & Raphael, 1968) and
JPSW algorithms are selected. These two algorithms were selected due
to their inherent lack of limitations, which makes them well-suited to
be used in various types of games without imposing any restrictions.
In modern games, the maps often incorporate weights on the nodes,
and these weights can undergo changes over time, such as alterations
caused by enemy movements. Hence, our primary focus during the
testing phase of this research is on evaluating algorithms that can
effectively manage node weights and adapt to dynamic changes. The
A* is the oldest intelligent path-finding algorithm, and is our baseline
with which to compare other algorithms, and has served as the only
option to find optimal paths in dynamically weighted gridmaps for
more than five decades. The JPSW is the state-of-the-art algorithm,
and we believe it is the only algorithm after A* that can take into
account weight and dynamic changes and guarantee the optimal path
in the grid map. The JPSW algorithm is a more advanced version
of the JPS algorithm that operates in a weighted environment. This
modification involves the introduction of revised jumping rules to
accommodate the weight of the environment and the application of
two novel pruning methods to improve pathfinding efficiency (Carlson,
Moghadam, Harabor, Stuckey, & Ebrahimi, 2023). The only other
modern option is the Dynamic Terrain Abstraction (DTA) algorithm
which is a hierarchical path-finding algorithm and can find sub-optimal
paths in dynamic conditions (Sturtevant et al., 2019). There are many
other fast algorithms in the pathfinding literature but the focus of
this research is to help game developers to find best possible algo-
rithm for their games. A major branch of algorithms developed in
this field only work in the uniform cost conditions where there are
only passable and impassable nodes (Harabor & Grastien, 2011; Uras,
Koenig, & Hernandez, 2013; Yap, Burch, Holte, & Schaeffer, 2011).
In the 2014 competition, most of these algorithms were compared to
one another (Sturtevant et al., 2015). The weight of the environment
cannot be handled by these methods. In modern games, it is necessary
to use varying weights for different nodes. For example, if the speed
of the agent differs between river, road, forest, and other terrain
types, then the correct weight must be set for nodes with different
terrain types in order to find the most optimal possible path for the
agent. A significant number of algorithms aim to make pathfinding
faster by performing offline pre-processing on maps. These algorithms

typically require a substantial amount of pre-processing, which makes
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Table 1
Pathfinding benchmarks attributes.

Benchmark Number of
maps

Support
weight

Specified
weight

Contain
impassable nodes

Grid based
maps

Mesh based
maps

Support multi
agent

Publish
year

Benchmarks for
Grid-Based
Pathfinding
(Sturtevant, 2012)

608 No Yes Yes Yes No No 2012

DTA (Sturtevant
et al., 2019)

20 Yes No No Yes No No 2019

Grid-based MAPF
(Stern et al., 2019)

24 No Yes Yes Yes No Yes 2019

Iron Harvest
(Harabor et al.,
2022)

105 No Yes Yes Yes Yes No 2021

Guards 4032 Yes Yes Yes Yes No No 2023
them unsuitable for dynamic environments as any changes to the map
invalidate the pre-computations (Botea, 2012; Cohen et al., 2017; Geis-
berger, Sanders, Schultes, & Delling, 2008; Sturtevant, Felner, Barrer,
Schaeffer, & Burch, 2009). Within the literature, there exists a body
of work that attempts to work in dynamic situation. For example
Dibbelt et al. try to repair preprocessed data (Dibbelt, Strasser, &
Wagner, 2016). Bono et al. use compressed path database as a lower
bound heuristic for path planning to achieve bounded sub-optimal path
faster in dynamic environments (Bono, Gerevini, Harabor, & Stuckey,
2019). However, these methods have their limitations. They are ef-
fective only when costs consistently increase, causing lower-bounding
heuristics to weaken without becoming inadmissible. The costs can also
decrease. In spite of that, as long as they never fall below a certain
minimum threshold, the estimates remain admissible (Mahéo et al.,
2021). Nevertheless, dynamic changes are necessary in many modern
applications, Therefore, it is essential for pathfinding algorithms used
in such scenarios to be able to handle dynamic changes in real-time,
without requiring a costly recomputation of the path.

This research focuses on the regular grid representation of maps
and the corresponding pathfinding algorithms. However, there are
alternative terrain representations, including hierarchical grids that
incorporate methodologies such as Probabilistic Roadmap (Rohrmuller,
Althoff, Wollherr, & Buss, 2008), quad trees (Brondani, Silva, Zacarias,
& de Freitas, 2019), and octrees (Zhao et al., 2022). Nevertheless,
this paper does not explore a detailed discussion of these alternative
types.

3. Generating dataset

In producing this benchmark, efforts are made to draw inspiration
from video games. The foundation of the Guards concept lies in the
idea that the risk associated with agent passage between nodes can
be converted into node weights. This approach enables artificial in-
telligence to make more informed decisions when selecting a path to
its destination. With this concept, guards can be strategically placed
at random locations on a weightless map, where they influence the
weight of neighboring nodes. This process results in the creation of a
weighted map. Assume that an agent must travel from one location
to another where there is a large number of enemy guards in the
environment. In the context of our system, it is defined that each
guard has a specific range, which can cause detrimental effects to
an agent passing through it. This range, commonly referred to as the
guard’s field of view (FOV), is characterized by a specific range within
which an agent is subject to damage per unit time. Shi and Crawfis
had similar considerations in their works (Shi & Crawfis, 2013, 2014).
They discusses a computational method for determining the optimal
placement of cover against static enemy positions for level design in
games. The authors propose a mathematical model that takes into
account factors such as the number and location of enemy positions,
3

Fig. 1. The line of sight of guards, represented by the red area, cannot penetrate
impassable nodes represented by the black area in the maps.

the range of weapons, and the terrain. The risk of passing from the
guards’ field can be added to grid nodes’ weight. Jong et al. stored the
risk of crossing each node in an influence map and built their heuristic
function according to the weight of the risk relative to the weight of
distance (Jong et al., 2015). Since our intention was to create a public
dataset for this study, all data of each node is preferable to be stored in
one character, therefore, the following approach is used to determine
the weight of each node.

Each terrain type initially carries a baseline weight denoted as ‘T’.
However, when it enters the line of sight of ‘g’ guards, its weight is
subject to adjustment. In this study, the terrain’s weight is calculated by
multiplying it by 2𝑔 to determine the updated node weight. Each guard
has a range (based on the terrain type), and their sight cannot pass
through impassable nodes. Weight of nodes can be limited to a specific
value. In the current generated dataset the weight of nodes are limited
to 220. Impassable nodes prevent guards’ lines of sight from passing
through them. This is demonstrated in Fig. 1, where the lines of sight
for five guards are highlighted in red on the map. The weight of a node
in our system is determined by the number of guards that can observe
it. During our testing, we found that for our tower defence game an
exponential function was the most effective way to set the weight based
on the number of guards. However, depending on the specific applica-
tion, other functions such as linear weighting may be more appropriate.
Our initial motivation for developing this system was to create a ‘‘tower
defence’’ game, where the artificial intelligence would have to decide
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which base to attack, each of which is protected by a different number
of guards. Through our experiments, it was determined that attacking a
farther base with fewer guards was often the better decision. Therefore,
the node weights were set exponentially based on the number of guards,
guiding the artificial intelligence towards better decisions. Algorithm 1
show how to calculate the weight of each cell.

Algorithm 1 Calculate guards map cells weight
1: Let 𝑐 be a cell of grid map 𝑔𝑟𝑖𝑑.
2: Let 𝑔 be a guard in 𝐺𝑢𝑎𝑟𝑑𝑠.
3: for 𝑐 ∈ 𝑔𝑟𝑖𝑑 do
4: for 𝑔 ∈ 𝐺𝑢𝑎𝑟𝑑𝑠 do
5: if 𝐼𝑠𝐼𝑛𝐺𝑢𝑎𝑟𝑑𝑅𝑎𝑛𝑔𝑒(𝑐, 𝑔) then
6: if 𝐼𝑠𝑉 𝑖𝑠𝑖𝑏𝑙𝑒𝑇 𝑜𝐺𝑢𝑎𝑟𝑑(𝑐, 𝑔) then
7: 𝑐.𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑚𝑖𝑛(220, 𝑐.𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 2)
8: end if
9: end if

10: end for
11: end for

The guards dataset is derived from Sturtevant’s popular benchmark
aps (Sturtevant, 2012). In this dataset, a total of 669 maps have been

ategorized into game benchmarks (Dragon Age, Warcraft, Baldur’s
ate II, and Starcraft), real-world benchmarks, and artificial bench-
arks (Mazes, Random maps, and Square Rooms). The Guards dataset

s generated by adding (0, 64, 128, 256, 512, 1024, 2048) guards to
ach map. To ensure that up to 2048 guards could be placed over
ach map, maps with a passable node count of less than 2048 were
xcluded. As a result, 27 maps from the Dragon Age 2009 dataset and
maps from the Dragon Age 2 dataset were removed due to their

ower node count. Therefore, a total of 4459 maps were generated
sing 637 baseline uniform cost maps and categorized accordingly. The
riginal dataset presents each map with a problem set. Each problem
et contains a number of scenario instances. Each scenario consists of

start and an end point. It has been ensured that the starting and
nding points of the scenarios are passable and there is definitely a
easible path to get from the starting point to the ending point. All
even guard maps were generated using the same problem set, and
o new scenario instances were created in this work. The new dataset
re publicly available for download from GitHub repository: https://
ithub.com/Sajjad-moghadam/Guards

The format of the Guards dataset files are described in Section 3.1.

.1. Files format

A Windows application was developed for generating weighted
aps based on the concept of Guards from weightless maps. This

pplication is publicly available for download from the mentioned
epository.

The application processes a folder containing map files in the Stu-
rtvent 2012 file format, as well as corresponding scenario files located
n an inner folder named ‘‘scen’’. The presence of a Metadata.txt file
s essential for generating new maps, which should contain data lines
bout terrain types, including their default weight, FoV coefficient, and
efault color, separated by the tab character. The default characters
sed for terrain types include ‘.’ for normal passable nodes, ‘T’ for
ree nodes, ‘S’ for shallow water, ‘@’ for impassable nodes, and ‘W’
or water. These default values should be choose and set by the user.
isualization of the map in png format is one of the application outputs.
he default colors will be used to generate this image. The weight
6 777 216 or 224 is used as the symbol of impassable nodes. Table 2
ists the default values used to generate Guard dataset.

Second line of Table 2 indicated that T (Tree) nodes have a base
eight of 2, and in this node type, the default FoV of guards should
e reduced to half. The last parameter is the default color of this
4

Table 2
The default values which are used to generate Guards dataset.

Char Weight FOV Color

. 1 1 #ffffff
T 2 0.5 #267928
S 4 1.25 #5eadd2
W 16 777 216 0 #0019d4
@ 16 777 216 0 #2d2d2d

terrain type. If other researchers wish to use this application to generate
weighted maps based on a other map that contains different characters,
they must define the corresponding values for those characters in the
metadata.txt file.

Five new files are generated for each baseline map to create the
Guards dataset, as described below:

• A new scenario file (problem set) is almost the same as the input
scenario file.

• An image of the new map in png format.
• An image of new map edges in png format.
• A new map file stores impassable nodes with the ‘@’ character.

The number of guards who have that node in their range of view
is stored for the other nodes. For numbers higher than 9, the
characters a, b, c, . . . are used.

• An extra data file which only contain weight correlation factor
value of the map at the moment.

For the Guards dataset, 4032 maps and 20 160 files are generated in
general.

4. Experimental results

The Warthog pathfinding research library is utilized to evaluate the
speed of pathfinding algorithms on the Guards dataset. The library is
implemented in C++ and contains the A* and JPSW algorithms. The
full source code of the Warthog library and JPSW implementation are
available at the following links:

• Warthog library: bitbucket.org/dharabor/pathfinding/src/master/
• JPSW implementation: bitbucket.org/mcar0024/pathfinding

The implemented A* algorithm in this library is the fastest implementa-
tion in our experience. The experiments were conducted on an Ubuntu
20.04 operating system, utilizing an Intel Core i7 4710HQ processor
and 16 GB of 1600 MHz DDR3 memory. During the testing phase, the
system was exclusively dedicated to the execution of the experiment
without any concurrent processes. In our implementation, only a single
core of the CPU running at a clock speed of 3.5 gigahertz (GHz) is
employed. Both A* and JPSW need to determine which of their nodes
to expand on each iteration of their main loop. It does so based on the
cost of the path up to the current node. In addition, it estimates the
cost required to extend the path all the way to the goal. Specifically,
they selects the path that minimizes:

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

here n is the next node on the path, g(n) is the cost of the path from
he start node to n, and h(n) is a heuristic function that estimates the
ost of the cheapest path from n to the goal. By adding a W multiplier
o h(n) where 𝑊 > 1 the priority of expanding nodes further away
rom the target will be reduced. The A* with 𝑊 > 1 usually find the
ath faster than A* but at the cost of losing optimality. The purpose
f this comparison is to identify the best algorithm for pathfinding
n computer games, and some sub-optimality is acceptable in most
ames. Both A* and JPSW algorithms are also tested with 𝑊 = 2.
he theoretical guarantee of A* search algorithm with a consistent
euristic is that it will not expand any state more than once. However,

https://github.com/Sajjad-moghadam/Guards
https://github.com/Sajjad-moghadam/Guards
https://github.com/Sajjad-moghadam/Guards
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Table 3
Algorithms average search time and suboptimality.

Algorithm Average time Suboptimality

A* 7.56 0%
JPSW 3.84 0%
A*(𝑊 = 2) 3.57 5.08%
JPSW(𝑊 = 2) 1.80 4.57%

by setting 𝑤 > 1 in weighted A* search (Pohl, 1970), consistency
may be violated, resulting in re-expansion of states multiple times
during the search process. In our implementation of the algorithms with
𝑊 = 2, A policy to avoid node re-expansion was enforced to optimize
pathfinding speed. This was achieved by disallowing the reopening of
nodes during the search process, ensuring that each node is expanded
exactly once. Likhachev et al. demonstrate that this will not invalidate
A*’s theoretical suboptimality bounds guarantees (Likhachev, Gordon,
& Thrun, 2003). In our tests, it causes an average of less than 1% to
be added to the sub-optimality of the paths. But it greatly increases
performance. In the case of JPSW, in rare cases when 𝑊 > 1 it may
occur that the algorithm is unable to find the path. Therefore, in these
cases, an extra search is done with 𝑊 = 1 so that the algorithm is
complete. Table 3 presents the results of running these algorithms over
all 4032 Guards dataset maps for more than twenty million scenarios.

As mentioned earlier, the level of complexity of the map has a
huge effect on the pathfinding speed and also it has different effect on
reducing the speed of different algorithms. To investigate this issue, it
is necessary to design parameters that quantify the complexity of the
map and the sensitivity of the algorithms to this complexity. Therefore,
in the next section, an attempt has been made to devise suitable
parameters for valuing these items. Therefore, to design a more efficient
scoring system, it is necessary to take into the account the complexity
of the maps. Also, with this information, game developers can choose
a more suitable algorithm according to the complexity of their game
map.

5. Weight complexity of maps

In the pathfinding field, there are several commonly used metrics
for evaluating the complexity of gridmaps. These metrics typically
focus on factors such as obstacle density, connectivity, and overall size
of the environment (Kavraki, Svestka, Latombe, & Overmars, 1996;
Sturtevant, 2012). While these metrics offer a fundamental understand-
ing of the challenges posed by different environments, none of them
specifically analyze the impact of nodes weight distribution on the
difficulty of pathfinding. This effect is important for us because the
algorithms, which can handle dynamic changes in the environment and
can be used generally in all games (like JPSW and DTA), achieve their
speed improvements by exploiting the symmetry of the gridmap, which
inversely correlates with the weight distribution. Consequently, the
performance of these algorithms varies significantly depending on the
weight distribution of the gridmaps. Therefore, it is essential to develop
a new metric that directly correlates with the weight distribution of
gridmaps.

The previous sections introduced a new benchmark for comparing
online path-finding algorithms in a weighted environment. Fig. 6 in
practical way shows that increasing the number of guards significantly
reduces the speed of pathfinding algorithms on the same map with
the same scenarios. Fig. 6 illustrates how increasing the number of
guards significantly influences the speed of pathfinding algorithms on
identical maps under the same scenarios. This reduction is due to the
decrease in symmetry and increase in weight complexity of the maps.
Symmetrical paths in the context of pathfinding refers to the property
of a map where certain paths can be transformed into equivalent paths
by reordering the moves in a different way. Specifically, if a new path
5

Fig. 2. Types of movement over grid maps.

and its permutation are both valid, and they have the same cost, It can
be said that they are symmetric.

Consider a grid map consisting of 𝐻 × 𝑊 cells, where each cell
is assigned a terrain cost 𝑡 ∈ R+. A move from one grid cell to
another adjacent grid cell is represented by a vector 𝑚⃗, which has
a corresponding direction and magnitude. Each move can be repre-
sented by a tuple of direction and magnitude 𝑚⃗ = (𝑔, |𝑚⃗|) where 𝑔 ∈
(𝑁⃗, 𝐸⃗, 𝑆, 𝑊⃗ ,𝑁𝐸, ⃗𝑁𝑊 ,𝑆𝐸, ⃗𝑆𝑊 ) and |𝑚⃗| ∈ R+. These moves can be
categorized into two groups , as shown in Fig. 2. the first group com-
prises orthogonal moves, including directions (𝑁⃗, 𝐸⃗, 𝑆, 𝑊⃗ ); the second
group consists of diagonal moves, with directions (𝑁𝐸, ⃗𝑁𝑊 ,𝑆𝐸, ⃗𝑆𝑊 ).
The magnitude of each move will be determined by the cost model. In
this work, a cost model is adopted in which the cost of moving from
one grid cell to another adjacent grid cell is equal to the magnitude
of the corresponding move vector multiplied by the weighted average
terrain cost, considering all the tiles intersected during the move action.
Specifically, the cost of an orthogonal move is equal to the average
terrain cost of the cells being moved from and moved to. The cost
of a diagonal move is the weighted average of the four cells that the
diagonal move intersects, i.e., the cells that the move vector touches.
These cells are the source cell, the target cell, and the two cells diag-
onally adjacent to the target cell. The weighted average is multiplied
by

√

2, as any non-point agent will intersect all four cells. Other cost
models are possible and have been considered elsewhere, including
multiplying the magnitude of the move vector by the terrain type of
the destination cell or taking the average of the terrain costs of the
source and destination cells. The concepts presented in this work are
applicable to these other cost models. The uniform cost model is also
considered as a special case, which is a grid where each cell is either
passable with unit terrain cost or impassable with infinite cost (see
Fig. 2). Mathematically, Symmetrical paths is defined in Definition 1:

Definition 1 (Symmetrical Paths). Let 𝐺 = (𝑉 ,𝐸) be a graph represent-
ing a pathfinding map, where 𝑉 is the set of vertices (grid cells) and 𝐸
is the set of edges (connections between adjacent cells). A path 𝑃 from
vertex 𝑠 ∈ 𝑉 to vertex 𝑡 ∈ 𝑉 is a sequence of vertices (𝑣0, 𝑣1,… , 𝑣𝑘)
such that 𝑣0 = 𝑠, 𝑣𝑘 = 𝑡, and (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸 for 0 ≤ 𝑖 ≤ 𝑘 and
path 𝑃 ′ = (𝑣0, 𝑣′𝑖 ,… , 𝑣′𝑘−1, 𝑣𝑘). The path 𝑃 can be represented as a
sequence of orthogonal and diagonal moves as 𝑃 = (𝑚⃗1,… , 𝑚⃗𝑘−1, 𝑚⃗𝑘)
where each move 𝑚⃗𝑖 corresponds to the edge (𝑣𝑖−1, 𝑣𝑖). Two paths 𝑃
and 𝑃 ′ are symmetric if there exists a permutation 𝜎 such that 𝑃 ′ =
𝜎(𝑚⃗1,… , 𝑚⃗𝑘−1, 𝑚⃗𝑘).

Based on Definition 1 the cost of path 𝑃 is equal to the cost of path
𝑃 ′.

Definition 2 (Optimal Paths). An optimal path from vertex 𝑠 ∈ 𝑉 to
𝑡 ∈ 𝑉 is a path with the minimum possible cost among all paths from
s to t.
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Fig. 3. Paths 1 and 2 are optimal and symmetrical, while Paths 3 and 4 are only
symmetrical.

Definition 3 (Optimal Symmetrical paths). Optimal symmetrical paths
refer to the number of paths between points 𝑠 ∈ 𝑉 and 𝑡 ∈ 𝑉 , where
path 𝑃 is not only optimal but also possesses at least one symmetrical
counterpart, path 𝑃 ′.

For example, Paths 1 and 2 in Fig. 3 are both optimal and sym-
metrical. Path 1 can be defined as 𝑃 1 = (𝑣(1,1), 𝑣(2,2), 𝑣(3,2)). which can
be represented as a sequence of moves 𝑃1 = (𝑚⃗(1,1)=>(2,2), 𝑚⃗(2,2)=>(3,2))
equal to 𝑃 1 = ((𝑆𝐸,

√

2), (𝐸⃗, 1)). Path 2 can be defined as 𝑃2 =
(𝑣(1,1), 𝑣(2,1), 𝑣(3,2)). which can be represented as a sequence of moves
𝑃 2 = (𝑚⃗(1,1)=>(2,1), 𝑚⃗(2,1)=>(3,2)) equal to 𝑃 2 = ((𝐸⃗, 1), (𝑆𝐸,

√

2)). As evi-
dent, the path P2 is a permutation of the path P1. Fig. 3 also illustrates
paths P3 and P4, which, while not optimal, exhibit symmetry.

Definition 4 (Gridmap Symmetry).

• Let 𝑁 be the total number of vertices in 𝑉 .
• Let 𝑇𝑃 be the total number of possible pairs of vertices in the

gridmap. If all nodes are passable, the total number of pairs of
nodes would be 𝑁 ⋅(𝑁−1)

2 .
• Let 𝑆𝑃 _𝐶𝑜𝑢𝑛𝑡 be the count of Optimal symmetrical paths between
𝑠 ∈ 𝑉 and 𝑡 ∈ 𝑉 .

• The symmetry of the gridmap, denoted as 𝑆𝑦𝑚𝐺𝑟𝑖𝑑𝑚𝑎𝑝, can be
calculated as:

𝑆𝑦𝑚𝐺𝑟𝑖𝑑𝑚𝑎𝑝 =

∑𝑁−1
𝑖=1

∑𝑁
𝑗=𝑖+1 𝑆𝑃 _𝐶𝑜𝑢𝑛𝑡𝑖,𝑗

𝑇𝑃
In two gridmaps with the same vertex count, the map with a higher

𝑆𝑦𝑚𝐺𝑟𝑖𝑑𝑚𝑎𝑝 is more symmetrical.

Definition 5 (Base Gridmap Symmetry). If the weight of nodes in a
gridmap is not considered, the nodes can only be classified as impass-
able or passable. When the Gridmap Symmetry is calculated under this
condition, it is referred to as the Base Gridmap Symmetry.

Based on Definition 1, it can be concluded when the diversity of
weights in a gridmap is high, it is likely that the number of symmetrical
path count become lower.

So the weight complexity of the map is defined as follows:

Definition 6 (Weight Complexity). Let 𝐵𝑎𝑠𝑒_𝑆𝑦𝑚 be the Base Gridmap
Symmetry calculated when the weights of nodes are not considered.
Let 𝐺𝑟𝑖𝑑_𝑆𝑦𝑚 be the Gridmap Symmetry calculated when the weights of
nodes are taken into account. Weight Complexity, denoted as
𝑊 𝑒𝑖𝑔ℎ𝑡_𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, can be defined as:

𝑊 𝑒𝑖𝑔ℎ𝑡_𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝐵𝑎𝑠𝑒_𝑆𝑦𝑚
𝐺𝑟𝑖𝑑_𝑆𝑦𝑚

The calculation of the symmetry and weight complexity of a
gridmap using this approach is computationally expensive, particularly
for large gridmaps, as it involves checking all optimal path permuta-
tions for all possible pairs of nodes. For example, in a grid without
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obstacles, there are 4 symmetrical paths from node (1,1) to (2,4),
32 symmetrical paths to (4,8), 6434 symmetrical paths to (8,16),
and 300,540,194 symmetrical paths to (16,32). This value increases
exponentially, making the calculation of weight complexity based on its
definition quite challenging. For instance, computing it for a 512 × 512
map could require months of computation on a standard CPU. So
another approaches is used to estimate the weight complexity of the
maps. The first approach is chunked weight complexity. In this method,
the map is divided into 16 × 16 chunks, and the weight complexity
is calculated separately for each chunk. Subsequently, the results are
aggregated by addition. Computing chunked weight complexity for a
512 × 512 map can be done in one day on a standard CPU.

The Weight Correlation Factor (WCF) represents the second ap-
proach introduced to model this complexity. This approach is based on
the observation that when a node has a weight different from its neigh-
bors on the map, it sjd: reduces symmetrical paths while increasing the
overall complexity for pathfinding. This complexity can be quantified
by assessing the frequency of these weight differences with neighboring
nodes. Identifying these differences in weight with neighboring nodes
can be managed in a manner akin to the edge detection process used
in image processing. For this purpose, the Sobel operator is used in this
research (Kanopoulos, Vasanthavada, & Baker, 1988). The Sobel filter
is an edge detection filter that utilizes image derivatives. Gridmaps can
be thought of as an image, where each node is a pixel. Image derivatives
are mathematical operations used to calculate the rate of change of
pixel values in an image. They are essential in various image processing
tasks, including edge detection, feature extraction, and image enhance-
ment. Derivatives provide information about the intensity variations
in an image, indicating regions of significant change in pixel values.
Edges and boundaries between objects can be identified by computing
derivatives, which are important for image analysis, object recognition,
and computer vision applications.

The Sobel operator uses two 3 × 3 kernels which will convolved
with the map to calculate approximations of the derivatives. One for
horizontal changes, and one for vertical. A kernel or convolution matrix
is a small matrix used in image processing for edge detection and
other image related operations like blurring and sharpening. This is
accomplished by doing a convolution between the kernel and an image
or more simply, when each pixel in the output image is a function of
the nearby pixels (including itself) in the input image, the kernel is that
function.

Convolution of 𝑓 and 𝑔 is expressed as 𝑓 ∗ 𝑔, denoting the operator
with the symbol ∗. This function is defined as the integral of the product
of two functions after one of them has been reflected about the 𝑦-axis
and shifted.

In order to define the convolution of two finite sequences, the
sequences must be extended to finitely supported functions on the set
of integers. The coefficients of the ordinary product of two polynomials
are the convolution of the original two sequences when the sequences
are the coefficients of two polynomials. This is called the Cauchy
product of the coefficients of sequences in mathematics.

(𝑓 ∗ 𝑔)[𝑛] =
𝑀
∑

𝑚=−𝑀
𝑓 [𝑚]𝑔[𝑛 − 𝑚]. (2)

If 𝑀 is defined as the source map, and 𝐺𝑥 and 𝐺𝑦 are two kernel
which at each point contain the horizontal and vertical derivative
approximations respectively, the ∗ here represents the 2-dimensional
signal processing convolution operation. the computations are as fol-
lows:

𝐺𝑥 =
⎡

⎢

⎢

⎣

−1 0 +1
−2 0 +2
−1 0 +1

⎤

⎥

⎥

⎦

∗ 𝑀

𝐺𝑦 =
⎡

⎢

⎢

⎣

−1 −2 −1
0 0 0
+1 +2 +1

⎤

⎥

⎥

⎦

∗ 𝑀
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Fig. 4. A 6 × 6 image, padded by one row and one column on each side, is convolved with a horizontal Sobel filter kernel. The kernel slide over the image and producing a
new 6 × 6 image.
Fig. 5. Left: a sample map with 1024 guards added to it. Right: A visualization of C values.
By combining the gradient approximations at each point in the map,
the gradient magnitude can be calculated as follows:

𝐺 =
√

𝐺2
𝑥 + 𝐺2

𝑦

The Sobel filter is sensitive to the amount of changes and assigns a
higher value to greater changes. However, in our application, minor
changes create a little more complexity for the algorithms because
higher weights cause that node to go down in the priority queue of
path-finding algorithms and help to prune that branch. Therefore, a
change from weight 1 to weight 1024 creates a little less complexity
for the algorithms than changing from 1 to 2. It is worth mentioning
that this assumption may not hold true for well-informed algorithms.
However, these types of algorithms typically struggle with handling
dynamic changes and fall outside the scope of our discussion. To
address this fact, Eq. (3) is presented to calculate how much complexity
will be added to the map by each edge based on the Sobel filter result
𝐺. In this equation 𝐺𝑖 is refer to value of a pixel at position i in the
output image G and 𝐶𝑖 is the converted value which will indicate the
amount of complexity added to the map by that pixel (see Fig. 4):

𝐶𝑖 =

{

0 if 𝐺𝑖 is 0
1 − 0.01 ∗ 𝑙𝑜𝑔2(𝐺𝑖) otherwise

(3)

The multiple of 0.01 in Eq. (3) is based on our experience which
reduces the amount of complexity that is added to the map by larger
changes. Fig. 5 is a visualization of C values which are extracted from
the source map.

By defining the number of passable nodes of the map as 𝑡𝑀 To
calculate the weight correlation factor, the total value of C is divided
by 𝑡𝑀 , which will be a numerical result between 0 and 1. As this
number approaches zero, the map becomes more symmetrical, and as
7

Table 4
This table presents the 𝑊𝐶𝐹 values for both the overall guards dataset and for each
subfolder within the dataset.

Guards 0 64 128 256 512 1024 2048

Overal 0.26 0.31 0.35 0.41 0.49 0.59 0.69
Warcraft 0.14 0.17 0.20 0.26 0.36 0.48 0.65
Starcraft 0.09 0.11 0.14 0.18 0.26 0.36 0.50
Rooms 0.22 0.24 0.25 0.28 0.33 0.42 0.53
Random 0.76 0.77 0.78 0.79 0.80 0.83 0.86
Maze 0.43 0.44 0.45 0.47 0.50 0.56 0.64
DA2009 0.32 0.40 0.46 0.54 0.64 0.75 0.83
DA2011 0.30 0.44 0.53 0.63 0.74 0.85 0.86
City 0.07 0.10 0.14 0.20 0.31 0.44 0.59
BG 0.08 0.17 0.25 0.37 0.49 0.64 0.78

it approaches one, the map becomes more complex. Eq. (4) shows how
to calculate 𝑊𝐶𝐹 :

𝑊𝐶𝐹 =
∑𝑛

𝑖 𝐶𝑖

𝑡𝑀
. (4)

Algorithms 2, 3, and 4 present the pseudocode for calculating WCF.
The Table 4 displays the 𝑊𝐶𝐹 values for the overall guards dataset,
as well as for each subfolder with varying numbers of guards.

Algorithm 2 Calculate WCF
1: Let 𝑡𝑀 be the number of passable nodes
2: 𝐶𝑉 𝑎𝑙𝑢𝑒𝑠 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶𝑉 𝑎𝑙𝑢𝑒𝑠()
3: 𝑊𝐶𝐹 ← 𝐶𝑉 𝑎𝑙𝑢𝑒𝑠

𝑡𝑀
4: return 𝑊𝐶𝐹
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Fig. 6 displays the Minimum, First Quarter, Second Quarter (Av-
erage), Third Quarter, and Maximum search times for JPSW and A*
algorithms on seven generated Guard maps, derived from the Bootybay
map with varying guard numbers. The tested scenarios on all seven
maps are the same. The only difference will be the number of guards on
the map (which will change the complexity and 𝑊𝐶𝐹 of the map). As
it can be seen the JPSW is more sensitive to the WCF of the map than
A*. Therefore, it seems necessary to provide a parameter to consider
this sensitivity in the algorithm scoring system.

Algorithm 3 Calculate C values from sobel filter results
1: Let ℎ𝑒𝑖𝑔ℎ𝑡 be the height of grid map.
2: Let 𝑤𝑖𝑑𝑡ℎ be the width of grid map.
3: for 𝑦 = 1 to ℎ𝑒𝑖𝑔ℎ𝑡 − 2 do
4: for 𝑥 = 1 to 𝑤𝑖𝑑𝑡ℎ − 2 do
5: if 𝑚𝑎𝑝[𝑦, 𝑥] is 𝑖𝑚𝑝𝑎𝑠𝑠𝑎𝑏𝑙𝑒 then
6: 𝐶𝑉 𝑎𝑙𝑢𝑒[𝑦, 𝑥] = 0
7: continue with next iteration
8: end if
9: 𝐺𝑦,𝑥 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑜𝑏𝑒𝑙𝐹 𝑖𝑙𝑡𝑒𝑟(𝑦, 𝑥)

10: if 𝐺𝑦,𝑥 is 0 then
11: 𝐶𝑉 𝑎𝑙𝑢𝑒[𝑦, 𝑥] ← 0
12: else
13: 𝐶𝑉 𝑎𝑙𝑢𝑒[𝑦, 𝑥] ← 1 − (0.01 ∗ log2(𝐺𝑦,𝑥))
4: end if
5: end for
6: end for
7: return 𝐶𝑣𝑎𝑙𝑢𝑒

Algorithm 4 Calculate Sobel filter for each node
1: 𝑔𝑥 ← 0
2: 𝑔𝑥 ← 𝑔𝑥 − 𝑚𝑎𝑝[𝑦 − 1, 𝑥 − 1]
3: 𝑔𝑥 ← 𝑔𝑥 − 𝑚𝑎𝑝[𝑦, 𝑥 − 1] ∗ 2
4: 𝑔𝑥 ← 𝑔𝑥 − 𝑚𝑎𝑝[𝑦 + 1, 𝑥 − 1]
5: 𝑔𝑥 ← 𝑔𝑥 + 𝑚𝑎𝑝[𝑦 − 1, 𝑥 + 1]
6: 𝑔𝑥 ← 𝑔𝑥 + 𝑚𝑎𝑝[𝑦, 𝑥 + 1] ∗ 2
7: 𝑔𝑥 ← 𝑔𝑥 + 𝑚𝑎𝑝[𝑦 + 1, 𝑥 + 1]
8: 𝑔𝑦 ← 0
9: 𝑔𝑦 ← 𝑔𝑦 − 𝑚𝑎𝑝[𝑦 − 1, 𝑥 − 1]

10: 𝑔𝑦 ← 𝑔𝑦 − 𝑚𝑎𝑝[𝑦 − 1, 𝑥] ∗ 2
1: 𝑔𝑦 ← 𝑔𝑦 − 𝑚𝑎𝑝[𝑦 − 1, 𝑥 + 1]

12: 𝑔𝑦 ← 𝑔𝑦 + 𝑚𝑎𝑝[𝑦 + 1, 𝑥 − 1]
13: 𝑔𝑦 ← 𝑔𝑦 + 𝑚𝑎𝑝[𝑦 + 1, 𝑥] ∗ 2
14: 𝑔𝑦 ← 𝑔𝑦 + 𝑚𝑎𝑝[𝑦 + 1, 𝑥 + 1]
15: 𝑔 ← 𝑠𝑞𝑟𝑡((𝑔𝑥 ∗ 𝑔𝑥) + (𝑔𝑦 ∗ 𝑔𝑦))
16: return 𝑔

Table 5 illustrates the WCF values, Chunked Symmetrical Path
ount, Chunked Weight Complexity, and algorithm search times across
he Warcraft Battleground Map with varying guard numbers. To assess
he effectiveness of these metrics in estimating the complexity intro-
uced by node weights on the map, Their correlation with algorithm
earch times is calculated. The formula presented in Eq. (5) details the
ethod for computing the Pearson Correlation.

=
∑𝑛

𝑖=1(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌 )
√

∑𝑛
𝑖=1(𝑋𝑖 − 𝑋̄)2

√

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 )2

(5)

Table 6 displays the correlation analysis between Chunked Weight
Complexity and WCF metrics concerning the search time of the A* and
JPSW algorithms. Remarkably, both metrics demonstrate a robust cor-
relation with the search speed of both algorithms, with WCF surpassing
Chunked Weight Complexity. Additionally, a mutual correlation of 0.78
is observed between these two metrics. Another significant advantage
of WCF is its efficiency in computation, allowing for near-instantaneous
8

calculation on a 512 × 512 map, in contrast to the lengthy day-long
computation required for Chunked Weight Complexity.

As mentioned before, calculating weight complexity is computation-
ally expensive. However to illustrate the correlation between Weight
Complexity and algorithm search time, experiments were conducted
on two small maps, namely ‘‘den900d’’ and ‘‘den403’’, from the Guards
dataset. The results, presented in Table 7, highlight a robust correlation
between both metrics and algorithms search time across these compact
maps.

6. Evaluation results

The average search time of the algorithms for all maps of the guards
dataset is shown in Fig. 9. The maps were divided into seven groups
based on the number of guards (0-64-128-256-512-1024-2048). The
average WCF of each group is shown on the horizontal axis and the
average search time for each group is indicated in the chart (see Fig. 7).

As the WCF value increases, the search time of the algorithms also
increases, but this increase is unique. For example Fig. 8 show average
search time of JPSW algorithm for 252 Warcraft maps in the Guards
dataset based on WCF value of the maps.

The data points in Fig. 9 demonstrate that the average search time
of each algorithm, as indicated by the WCF value, follows an upward
trend and based on our experience can be accurately represented by an
exponential mathematical function of the form 𝐴 exp𝐵𝑥 +𝐶.

This model has the potential to greatly aid in the comparison and
evaluation of algorithms. The non-linear least squares method is em-
ployed to determine the optimal coefficients for the exponential model
for each algorithm. non-linear least squares (NLS) is a statistical method
used for fitting a non-linear function to a set of data points. The goal
of NLS is to find the best-fitting curve that describes the relationship
between the independent and dependent variables in a non-linear
manner. In NLS, the parameters of the non-linear function are esti-
mated by minimizing the sum of the squared differences between the
observed and predicted values. This approach allows for the estimation
of complex relationships that cannot be captured by linear regression.
The optimal coefficients for our models are determined using the NLS
method in the R programming language. The models were fitted to
the points with a high degree of accuracy, as demonstrated by the
average residual standard error of less than 0.03. This means that, on
average, the predicted values generated by the models were very close
to the actual observed values, with a minimal amount of error. The
visualization in Fig. 10 confirms that the model estimations based on
data points are extremely precise. In this figure, the markers represent
the average search time for each algorithm, calculated from benchmark
runs over the guards dataset. The maps are categorized based on the
count of guards, and the averages are computed accordingly. The lines
in the figure correspond to the fitted models for each algorithm.

Fitted model for algorithms are shown in Table 8. By utilizing this
model and the WCF value of a map, a well-informed decision can be
made regarding the most appropriate search algorithm to use for a
given map. Furthermore, if the WCF of a map changes dynamically
over time, the use of this model allows for real-time switching to
the best search algorithm, ensuring optimal performance and efficient
processing.

One of the characteristics of this search time predication model is
that its gradient indicates the algorithm’s sensitivity to map complexity.
Thus, evaluating the derivative of the model at each point provides
insight into the algorithm’s sensitivity to complexity.

7. Algorithms overall score

The search time predication model offers a quantitative way to
evaluate the performance of the algorithms being studied. The amount
of area under the model line in the diagram corresponds to the search
time and serves as a performance indicator. To assess the performance
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Fig. 6. WCF and search time varies based on the map complexity.
Table 5
Calculation of WCF, Chunked weight complexity, and algorithm search times for the Warcraft Battleground Map with varying guard quantity.

Guards WCF WCF Ratio Chunked symmetrical path count Chunked weight complexity A* Average time JPSW Average time

0 0.14 1.00 2,590,937,828 1.00 1.96 0.47
64 0.18 1.27 2,225,571,974 1.16 2.35 0.70
128 0.21 1.47 1,921,203,002 1.35 2.68 0.91
256 0.27 1.92 1,499,800,270 1.73 3.86 1.60
512 0.37 2.67 886,047,510 2.92 6.17 3.63
1024 0.50 3.55 439,012,586 5.90 8.42 6.11
2048 0.66 4.69 24,893,266 104.08 13.77 13.38
Fig. 7. Algorithms overall speedup over A* which are categorized based on the number of guards on the map.
Fig. 8. The average search time of the JPSW algorithm varies across different maps
and is influenced by the WCF.
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Table 6
Analyzing correlations between WCF, chunked weight complexity, and algorithms
search time for the Warcraft Battleground Map.

Metric Chunked weight complexity WCF Ratio

A* Search time 0.862 0.990
JPSW Search time 0.919 0.963

Table 7
Examining relationships among WCF, weight complexity, and algorithms search time
for two small maps.

Metric Weight complexity WCF ratio

A* Search time 0.8945 0.8764
JPSW Search time 0.8870 0.8941

of each algorithm more precisely, we can calculate the integral of each
model from the minimum to the maximum WCF value obtained from
the average WCF of 0 guards to 2048 guards. Therefore, it is necessary
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Fig. 9. The JPSW average search time of all the scenarios in the Guards dataset based on WCF value of the maps.
Fig. 10. The fitted model for each algorithm.
Table 8
Fitted models for various algorithms.

Alg Model Integral Derivative

A* 0.57 exp4.3𝑋 +4.1 0.132 exp4.3𝑋 +4.1𝑋 2.45 exp4.3𝑋

JPSW 0.3 exp5.16𝑋 +0.64 0.058 exp5.16𝑋 +0.64𝑋 1.54 exp5.16𝑋

A*(W = 2) 0.012 exp9.13𝑋 +2.6 0.0013 exp9.13𝑋 +2.6𝑋 0.11 exp9.13𝑋

JPSW(W = 2) 0.019 exp8.5𝑋 +0.72 0.0022 exp8.5𝑋 +0.72𝑋 0.16 exp8.5𝑋

to compute the integral of the model between the WCF values of 0.268
and 0.693. This yields a raw score for each algorithm, providing a
comprehensive evaluation of their performance. This raw score rep-
resents the algorithm’s quality and efficiency, allowing for informed
decision-making in the general selection of the optimal algorithm. The
calculated score provides a means of comparing the performance of
different algorithms and facilitates the selection of the best suited
algorithm for a given scenario. It is referred to as the raw score because
it only takes into account the search speed and does not factor in the
optimality of the found path. The raw score provides a useful measure
of an algorithm’s efficiency and performance, but other factors such as
the optimality of the solution must also be considered when making an
informed decision. Eq. (6) shows how to calculate row score of each
10
algorithm:

𝑅𝑎𝑤𝑆𝑐𝑜𝑟𝑒𝑖 = ∫

0.693

0.268
𝑓 (𝑥)𝑖 𝑑𝑥 (6)

The significance of finding the optimum path varies across different
applications. However, for computer games, which are a critical ap-
plication of these algorithms, a path that is close to optimum is often
sufficient. Based on our experience, it is proposed to incorporate the
level of optimality into the overall score of the algorithms through
Eq. (7).

𝑂𝑆𝑖 = ∫

0.693

0.268
𝑓 (𝑥)𝑖 𝑑𝑥 ∗ (

∑𝑛
1 𝐿𝑒𝑛𝑖

∑𝑛
1 𝐿𝑒𝑛𝑜𝑝𝑡𝑖𝑚𝑎𝑙

)𝑒 (7)

This equation decreases the score of the algorithms exponentially
based on their sub-optimality, meaning that a small deviation from the
optimum results in a relatively minor penalty. To create this penalty
model, linear, power of 2 and 3, and exponential penalty were con-
sidered. After consulting with numerous experts in game development,
the conclusion was reached that designing a penalty model that results
in approximately 30% penalty for 10% suboptimality, 65% penalty for
20% suboptimality, and 100% penalty for 30% suboptimality would be
ideal. The exponential function provided results that were closest to our
expert opinion, assigning penalty values of 29.5%, 64.1%, and 104%
for 10%, 20%, and 30% suboptimality, respectively. Incorporating
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Table 9
Raw Score (RS), suboptimality (SO) and overall score (OS) of algorithms (lower score
is better).

Alg RS SO OS

A* 3.92 0% 3.92
JPSW 2.08 0% 2.08
A*(W = 2) 1.81 5.08% 2.07
JPSW(w = 2) 1.07 4.57% 1.2

a penalty for memory usage was considered in the algorithms, but
after careful evaluation, we concluded that the memory requirements
of these algorithms are negligible on modern hardware. Hence, the
decision was made not to implement such a penalty.

This way, the overall score of the 𝑖th algorithm takes into consider-
ation not only the algorithm’s efficiency (reflected by the raw score),
but also the degree of optimality of the paths generated by the algo-
rithm (represented by the sub-optimality penalty factor). The overall
score provides a comprehensive evaluation of the performance of the
𝑖th algorithm, enabling informed decision-making in its selection for
specific applications. In the field of pathfinding algorithms, numerous
factors can be compared to determine their effectiveness, with varying
levels of importance depending on the specific application. Typically,
these comparisons involve showcasing the pareto frontier, which can
be challenging to interpret and comprehend quickly. Consequently,
there is a need for an overall score that facilitates easy and efficient
comparison of different algorithms. Table 9 presents the overall scores
of various algorithms, where a lower score is deemed to be more
favorable. As per the results, JPSW with a value of w = 2 emerges
as the best choice for game developers in dynamic environments that
incorporate weights. In instances where the game can tolerate higher
sub-optimality, a higher value of W can be selected to attain faster
pathfinding performance.

8. Conclusions

This paper presents a new benchmark to enhance the evaluation
of pathfinding algorithms on weighted grid-based environments. Novel
parameters were aimed to be introduced in order to facilitate compar-
isons between maps and algorithms. Weight complexity is introduced
as a term in this research, signifying the observed phenomenon where
adding weights to grid cells slows down grid pathfinding algorithms.
The paper utilizes this term to characterize the impact on algorith-
mic performance. By following a standard procedure, researchers can
obtain an overall score for their algorithm that can be compared to
other algorithms. Our findings indicate that the JPSW algorithm cur-
rently performs best in weighted pathfinding in dynamic environments.
Overall, this research provides valuable insights into the pathfinding al-
gorithms and offers a new framework for evaluating their performance
in weighted grid-based environments.

The focus of this research during the testing phase is on pathfinding
algorithms that can handle dynamic weight changes, but the designed
dataset does not incorporate dynamic changes to simplify the evalua-
tion process for all researchers. Future work could include developing a
separate standard procedure to measure the sensitivity and adaptability
of algorithms to dynamic changes. Additionally, The current WCF cal-
culation is tailored for a range of map types, especially those featuring
exponential weight. Nevertheless, investigating alternative methods for
WCF computation holds the potential to improve its correlation with
algorithmic search times across various maps and datasets. This avenue
could be explored in future work.
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