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A B S T R A C T

The Multi-Agent Path Finding problem aims to find a set of collision-free paths that minimizes the total
cost of all paths. The problem is extensively studied in artificial intelligence due to its relevance to robotics,
video games and logistics applications, but is seldom considered in the mathematical optimization community.
This paper tackles the problem using a branch-and-cut-and-price algorithm that incorporates a shortest path
pricing problem for finding paths for every agent independently and thirteen classes of constraints for resolving
different types of conflicts. Experimental results show that this mathematical approach solves 2402 of 4430
instances compared to 2039 and 1939 by the state-of-the-art solvers Lazy CBS and CBSH2-RTC published in
artificial intelligence venues.
1. Introduction

Multi-Agent Path Finding (MAPF) is a family of combinatorial op-
timization problems that originated from artificial intelligence and
automated planning. The family of problems typically features simple
combinatorial structures yet it is extremely relevant to many applica-
tion domains including robotics, video games and logistics (e.g., Sharon
et al., 2015; Ma et al., 2017).

This paper considers the simplest and most studied variant within
the problem family. Space and time are discretized. Given a grid world
with numerous obstacles and a group of cooperating agents, each
with a unique start cell and goal cell, the MAPF problem consists in
routing every agent from its start cell to its goal cell along a path of
orthogonally-connected grid cells such that the agents do not collide
into each other at any time and that the total number of actions is min-
imized (note that some variants minimize makespan). Two instances
are shown in Fig. 1. A solution is drawn in colored lines. Each line
represents the path taken by an agent from its start cell to its goal cell.
Even though the paths appear to cross, the agents traverse the same
cells in different timesteps and hence do not collide.

This paper presents BCP, a branch-and-cut-and-price algorithm for
MAPF. BCP decomposes the MAPF problem into (1) a master problem
that selects a set of low-cost paths from a large pool of paths, (2) a
pricing problem that adds lower-cost paths to the pool in the master
problem or proves that none exist, (3) separation problems that add
constraints to the master problem to resolve conflicts, and (4) branch-
ing rules that split the nodes in the branch-and-bound search tree. BCP

∗ Corresponding author.
E-mail addresses: edward.lam@monash.edu (E. Lam), pierre.lebodic@monash.edu (P. Le Bodic), daniel.harabor@monash.edu (D. Harabor),

peter.stuckey@monash.edu (P.J. Stuckey).
URLs: https://ed-lam.com/ (E. Lam), https://harabor.net/daniel/ (D. Harabor), https://people.eng.unimelb.edu.au/pstuckey/ (P.J. Stuckey).

includes a non-trivial adaptation of the A* shortest path algorithm to
solve the pricing problem, thirteen classes of constraints for resolving
different types of conflicts and two branching rules, one of which
directly bounds the objective function. Experiments on 4430 instances
across 16 maps from two sets of standard benchmarks indicate that
BCP outperforms the two leading solvers Lazy CBS (Gange et al., 2019)
and CBSH2-RTC (Li et al., 2021) by solving 2402 instances in total,
compared to 2039 by Lazy CBS and 1939 by CBSH2-RTC.

This journal article presents the definitive version of the BCP algo-
rithm first introduced in two conference papers (Lam et al., 2019; Lam
and Le Bodic, 2020). This paper extends the earlier conference papers
by presenting (1) technical details and examples previously omitted,
(2) four more classes of constraints for resolving new types of conflicts,
(3) a technique for caching solutions from the pricing problem and (4)
new experimental results.

The remainder of this paper is organized as follows. Section 2
formalizes the problem. Section 3 reviews existing methods for exact
MAPF. Section 4 reviews the BCP algorithm and presents several recent
improvements. Section 5 analyzes the experimental results. Section 6
concludes this paper.

2. Problem definition

Consider a grid world with width 𝑊 ∈ Z+ and height 𝐻 ∈ Z+. We
define  = {0,… ,𝑊 −1}×{0,… ,𝐻−1} as the set of locations. A location
𝑙 ∈  is a pair of a horizontal coordinate and a vertical coordinate on
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Fig. 1. Agents exploring a randomly generated maze and a map from a video game.
the grid. Some locations are designated as obstacles, i.e., agents cannot
move through them. A location 𝑙2 = (𝑥2, 𝑦2) ∈  is a neighbor of location
𝑙1 = (𝑥1, 𝑦1) ∈  in the

• north direction if 𝑥2 = 𝑥1 and 𝑦2 = 𝑦1 − 1,
• south direction if 𝑥2 = 𝑥1 and 𝑦2 = 𝑦1 + 1,
• west direction if 𝑥2 = 𝑥1 − 1 and 𝑦2 = 𝑦1, and
• east direction if 𝑥2 = 𝑥1 + 1 and 𝑦2 = 𝑦1.

Under this definition, the north-west corner of the grid is the origin
(0, 0).

Given a time horizon 𝑇 ∈ Z+, let  = {0,… , 𝑇 − 1} denote the
set of timesteps. The problem is defined on a time-expanded directed
acyclic graph  = ( , ), where  =  ×  is the set of vertices and
 = {(((𝑥1, 𝑦1), 𝑡1), ((𝑥2, 𝑦2), 𝑡2)) ∈  ×  ∶ |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| ≤ 1 ∧ 𝑡2 =
𝑡1+1} is the set of edges. A vertex 𝑣 ∈  is a location-timestep pair. An
edge 𝑒 ∈  is a pair of vertices indicating a movement from a location
at some timestep to a neighbor location (a move action) or a movement
to the same location in the next timestep (a wait action). The reverse of
an edge 𝑒 = ((𝑙1, 𝑡1), (𝑙2, 𝑡1 + 1)) is denoted 𝑒′ = ((𝑙2, 𝑡1), (𝑙1, 𝑡1 + 1)).

We define  as the set of agents. Each agent 𝑎 ∈  has a start
location 𝑠𝑎 ∈  and a goal location 𝑔𝑎 ∈ , which may coincide.
Every start location is unique and every goal location is unique. A
path 𝑝 of length 𝑘 ∈ {1,… , 𝑇 } for agent 𝑎 is a sequence of 𝑘 locations
(𝑙0, 𝑙1, 𝑙2,… , 𝑙𝑘−1) such that 𝑙0 = 𝑠𝑎, 𝑙𝑘−1 = 𝑔𝑎 and ((𝑙𝑡, 𝑡), (𝑙𝑡+1, 𝑡 + 1)) ∈ 
for all 𝑡 ∈ {0,… , 𝑘 − 2}. Path 𝑝 visits the vertices (𝑙𝑡, 𝑡) where 𝑡 ∈
{0,… , 𝑘 − 1} and (𝑔𝑎, 𝑡) for all 𝑡 ∈ {𝑘,… , 𝑇 − 1} as the agent remains
at its goal location after the path concludes. Path 𝑝 traverses the edges
((𝑙𝑡, 𝑡), (𝑙𝑡+1, 𝑡+1)) where 𝑡 ∈ {0,… , 𝑘−2} and the edges ((𝑔𝑎, 𝑡), (𝑔𝑎, 𝑡+1))
where 𝑡 ∈ {𝑘 − 1,… , 𝑇 − 2}. Path 𝑝 has a cost 𝑐𝑝 = 𝑘 − 1 equal to the
number of edges, i.e., the number of move or wait actions before the
agent reaches its goal (and waits there indefinitely).

A feasible solution to MAPF is a set of paths, one for each agent
𝑎 ∈ , such that (1) each vertex is visited at most once and (2)
each edge or its reverse are traversed at most once (in this statement
and throughout, vertices and edges are time-expanded). These two
conditions are respectively called vertex conflicts and edge conflicts. An
optimal solution to MAPF is a feasible solution that minimizes the sum
of costs of all paths.

3. Related work

There are three broad classes of algorithms for optimal MAPF: (1)
search-based methods solve MAPF directly and typically implement ad
hoc techniques specific to the problem, (2) compilation-based methods
reduce MAPF to instances of well-known combinatorial optimization
problems and thus can benefit from advances in solver techniques, and
more recently, (3) hybrids.
2

3.1. Search-based methods

Multi-agent planning. MAPF can be considered as a special case of
multi-agent planning, a well-known class of problems that is often
solved by modeling the set of agents as one large agent with many
degrees of freedom (Torreño et al., 2017). This approach, sometimes
called joint planning, completely fails even for small instances (Standley,
2010).

Operator decomposition. Algorithms of this type plan in the joint space
of all agents but in a way that tries to avoid an explosion in branch-
ing factor. Operator decomposition (Standley, 2010) is a well-known
example that interleaves the planning of single agents to dramatically
reduce the branching factor of the search. Another approach, EPEA*,
is a partial expansion solver, which defers generating all but the most
promising successors of a node (Goldenberg et al., 2014). Operator
decomposition and EPEA* are both optimal and are often effective on
MAPF problems with up to dozens of agents and with low congestion.
In more challenging settings, these methods often exhaust available
memory long before finding a solution (Standley, 2010).

Conflict-based search. Conflict-based search (CBS) (Sharon et al., 2015)
is a two-level tree search that resembles a simple form of branch-
and-bound. At the low level, it computes a path for each agent inde-
pendently. At the high level, CBS detects conflicts between pairs of
agents and resolves them by splitting the current solution into two
related subproblems, each of which involves replanning a single agent.
Recursively resolving conflicts by splitting a subproblem into two chil-
dren implicitly defines a search tree. The high-level search explores
this tree using best-first search and finds an optimal solution upon
expanding the first collision-free node. The success of CBS has led to a
large family of optimal and bounded suboptimal variants (Felner et al.,
2017). Such leading MAPF algorithms can scale to large maps with
many agents, often with the help of reasoning techniques developed
specifically for MAPF, such as lower-bounding heuristics (Felner et al.,
2018), branching strategies (Boyarski et al., 2015) and specialized
constraints (Li et al., 2019). CBSH2-RTC (Li et al., 2021) is currently
the top-performing variant within the CBS family.

3.2. Compilation-based methods

Compilation-based methods reduce MAPF to an instance of another
problem, such as constraint programming (Ryan, 2010), answer set
programming (Erdem et al., 2013), propositional satisfiability (Surynek
et al., 2016b,a) or integer programming (Yu and LaValle, 2013). In
general, these methods create a model of MAPF that contains variables
to store values representing the actions of the agents, and constraints
to communicate restrictions on the possible values of the variables.
Then, solving MAPF is as simple as solving the model, which can
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be done easily (but not necessarily quickly) using black-box solvers.
Furthermore, by formulating MAPF as an instance of another problem,
the latest advances in solvers are immediately available. All that is
needed is a ‘‘good’’ model, leaving the solving process to specialized
software packages.

The integer programming model of MAPF (Yu and LaValle, 2013)
is particularly relevant. This reduction involves a time-expanded graph
whose vertices are indexed by space and time, and specialized gadgets
to account for conflicts. Despite this inefficient representation, the
model remains reasonably effective on small instances since integer
programming solvers are mature industry-grade software supported by
decades of academic research.

3.3. Hybrids

Lazy CBS. Conflict analysis is an essential technique in modern propo-
itional satisfiability (Marques Silva and Sakallah, 1996) and constraint
rogramming (Ohrimenko et al., 2009) solvers. Conflict analysis prunes
n exponential number of nodes in the search tree by dynamically
uilding constraints to prevent the same infeasibility from occurring
lsewhere in the search tree. Lazy CBS (Gange et al., 2019) is an im-
rovement of CBS that implements conflict analysis. Lazy CBS records
he change in costs from forcing an agent to avoid a vertex or edge
pon branching and then uses this information to deduce that certain
ombinations of branchings are suboptimal and consequently prune all
odes, even those from disparate parts of the search tree, that contain
hese branchings.

. The BCP algorithm

This section presents the main contributions of this paper. Be-
ore proceeding further, readers unfamiliar with integer programming
r branch-and-cut-and-price are recommended to first consult the in-
uition and background information provided in the supplementary
aterial. For a formal treatment, we advise them to consult introduc-

ory material for integer programming (e.g., (Rader, 2010)) and then
he tutorials on branch-and-cut-and-price (Desrosiers and Lübbecke,
010; Lübbecke and Desrosiers, 2005; Desaulniers et al., 2005; Barnhart
t al., 1998).

.1. Overview

Branch-and-cut-and-price is a general framework for solving a com-
inatorial optimization problem via a sequence of easier subprob-
ems (Desrosiers and Lübbecke, 2010; Lübbecke and Desrosiers, 2005;
esaulniers et al., 2005; Barnhart et al., 1998). In particular, it can

olve large-scale graph optimization problems for which other ap-
roaches fail. Its power comes from three main sources: (1) it can
all dedicated algorithms to solve the subproblems, (2) it can solve
xponential-size integer programming models whose linear relaxation
s theoretically tighter than all other known models (e.g., (Letchford
nd Salazar-González, 2006)), and (3) it presents alternative views into
problem and hence enables cutting planes in different spaces. BCP

s a branch-and-cut-and-price algorithm that exploits (1) and (3). BCP
onsists of four main components:

• a master problem that assembles a set of low-cost paths, each
represented by a variable/column,

• a pricer that finds lower-cost paths,
• eleven separators that resolve conflicts in candidate solutions

proposed by the master problem, and
• two branching rules that resolve fractionalities in the master prob-

lem.
3

1 𝑜𝑝𝑒𝑛 ← NewPriorityQueue() // create priority queue of
nodes

2 𝑜𝑝𝑒𝑛.Add(CreateRootNode()) // create root node
3 while ¬𝑜𝑝𝑒𝑛.IsEmpty() do // solve every node
4 𝑛𝑜𝑑𝑒 ← 𝑜𝑝𝑒𝑛.Pop() // get node from priority queue
5 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒 // initialize control variable
6 while 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 do // loop until no cuts are found
7 𝑝𝑟𝑖𝑐𝑒𝑑 ← 𝑡𝑟𝑢𝑒 // initialize control variable
8 while 𝑝𝑟𝑖𝑐𝑒𝑑 do // loop until no new paths are

found
9 SolveMasterProblem(𝑛𝑜𝑑𝑒.𝑚𝑎𝑠𝑡𝑒𝑟) // solve

master problem
10 𝑝𝑟𝑖𝑐𝑒𝑑 ← Pricer(𝑛𝑜𝑑𝑒.𝑚𝑎𝑠𝑡𝑒𝑟) // generate new

paths
11 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 ← Separators(𝑛𝑜𝑑𝑒.𝑚𝑎𝑠𝑡𝑒𝑟) // generate new

cuts
12 if 𝑛𝑜𝑑𝑒.𝑚𝑎𝑠𝑡𝑒𝑟.IsFractional() then // split the node if

fractional
13 𝑙𝑒𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑, 𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑 ← CreateChildren(𝑛𝑜𝑑𝑒)

// create children nodes
14 𝑜𝑝𝑒𝑛.Add(𝑙𝑒𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑) // add left child to priority

queue
15 𝑜𝑝𝑒𝑛.Add(𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑) // add right child to

priority queue

Algorithm 1: A basic branch-and-cut-and-price algorithm
loosely followed by BCP.

The pseudocode for BCP is given in Algorithm 1. BCP is imple-
mented in the SCIP integer programming solver, which mostly follows
but does not strictly adhere to the algorithm shown. Firstly, a priority
queue for storing the open nodes of the branch-and-bound tree is
created (Line 1). Next, the root node is created and added to the priority
queue (Line 2).

BCP then loops through every open node (Lines 3 and 4), as ordered
by the best-first scoring function. The outer separation loop begins in
Lines 5 and 6. The separation loop contains the inner pricing loop,
which begins in Lines 7 and 8.

The pricing loop alternates between solving the master problem
(Line 9) and the pricing problem (Line 10). Given a large set of
paths for each agent, the master problem solves a linear program to
determine the fraction that each path is selected in a candidate solution.
The pricing problem is solved after the master problem. The pricing
problem attempts to find lower-cost paths for inclusion in the sets from
which the master problem operates, in the hope that these paths will
be chosen in the next iteration of the master problem. Even if lower-
cost paths are found, the master problem is not guaranteed to use them
because they may be incompatible with the paths of other agents or for
other reasons (e.g., degeneracy).

Eventually, the pricer will declare that it cannot find a potentially-
improving path. At this point, BCP proceeds to the separators (Line 11).
BCP currently contains thirteen separators, each handling a different
class of conflicts: two are the vertex and edge conflicts, which are
problem constraints and are necessary to correctly define the problem,
and the remaining eleven are valid inequalities, which are redundant
constraints that improve performance in practice and give theoretical
insights into the geometry of the search space. The candidate solution
to the master problem is passed to each separator in turn, which checks
whether the candidate solution violates a conflict in its class. If so,
the constraint is added to the master problem, requiring the master
problem (together with the pricing problem) to propose a different
candidate solution that does not contain this conflict.

The node is solved when the outer loop is completed. Branching
occurs if the master problem solution has at least one variable taking a
fractional value (Line 12). BCP splits the node into two children nodes
according to a branching rule (Line 13) and adds them to the priority
queue (Lines 14 and 15).
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To correctly define BCP as an instantiation of the branch-and-cut-
and-price algorithm for the MAPF domain, one must define a master
problem that assembles the paths and constraints, define at least one
pricer for finding paths and show that it will find a lower-cost path
(i.e., a path with negative reduced cost) if and only if one exists,
define separators of problem constraints and show that if a solution
violates a constraint, the separators will find this constraint and also
show that all constraints added by the separators will retain at least
one feasible solution, define separators of valid inequalities and show
that all constraints added by the separators will retain at least one
feasible solution, and define at least one branching rule for resolving
fractionalities and show that it cannot remove valid integer solutions.
The master problem, pricer, separators and branching rules of BCP are
formalized below.

4.2. The master problem

Given a set of possible paths for every agent, the master problem
uses linear programming to minimize the sum-of-costs by selecting,
ideally, a path, but often, a set of fractional paths for every agent such
that all selected paths are fractionally free of conflicts.

Let 𝑎 be a large pool of candidate paths for every agent 𝑎 ∈ .
For all 𝑎 ∈ , 𝑝 ∈ 𝑎, define 𝜆𝑝 ∈ [0, 1] as a variable representing the
proportion of selecting path 𝑝. Because the master problem is solved
using linear programming, 𝜆𝑝 can take fractional values.

The master problem begins as the linear programming problem:

min
∑

𝑎∈

∑

𝑝∈𝑎

𝑐𝑝𝜆𝑝 (1a)

subject to
∑

𝑝∈𝑎

𝜆𝑝 = 1 ∀𝑎 ∈ , (1b)

𝜆𝑝 ≥ 0 ∀𝑎 ∈ , 𝑝 ∈ 𝑎. (1c)

Objective Function (1a) minimizes the total cost of the selected
paths. Constraint (1b) ensures that every agent uses exactly one path.
Constraint (1c) are the non-negativity constraints, which disallow neg-
ative proportions of a path. Constraints (1b) and (1c) together ensure
that 𝜆𝑝 ∈ [0, 1]. Constraints enforcing vertex conflicts and edge conflicts
are initially omitted and added dynamically as necessary.

4.3. Resolving conflicts

BCP resolves vertex conflicts and edge conflicts by calling separators
to add constraints to the master problem. Even though BCP can solve
MAPF with only the vertex conflicts and edge conflicts, its performance
can be substantially improved by reasoning about different classes of
conflicts. This section describes how vertex conflicts and edge conflicts
are implemented in BCP, and then introduces nine classes of conflicts
that either reason about the MAPF problem structure or combine
various combinations of vertex conflicts and edge conflicts into one
stronger constraint.

4.3.1. Reasoning about vertices and edges in the master problem
It is not yet clear how to enforce constraints on vertices and edges

since the variables in the master problem concern paths. The vertices
and edges used by the paths selected by the master problem can be
obtained as follows.

Recall from Section 2 that a path 𝑝 = (𝑙0, 𝑙1, 𝑙2,… , 𝑙𝑘−1) for an agent
𝑎 ∈  visits the vertices (𝑙𝑡, 𝑡) for all 𝑡 ∈ {0,… , 𝑘 − 1} and (𝑔𝑎, 𝑡) for
all 𝑡 ∈ {𝑘,… , 𝑇 − 1}, and traverses the edges ((𝑙𝑡, 𝑡), (𝑙𝑡+1, 𝑡 + 1)) for all
𝑡 ∈ {0,… , 𝑘 − 2} and ((𝑔𝑎, 𝑡), (𝑔𝑎, 𝑡 + 1)) for all 𝑡 ∈ {𝑘 − 1,… , 𝑇 − 2}. Let
𝑥𝑝𝑣 ∈ {0, 1} be a constant taking value 1 if path 𝑝 visits vertex 𝑣 ∈ 
and take value 0 otherwise. Let 𝑥𝑝𝑒 ∈ {0, 1} similarly indicate whether
path 𝑝 traverses edge 𝑒 ∈  . Under this definition, 𝑥𝑝𝑣 and 𝑥𝑝𝑒 include
4

the vertices (𝑔𝑎, 𝑡), 𝑡 ∈ {𝑘,… , 𝑇 − 1}, and edges ((𝑔𝑎, 𝑡), (𝑔𝑎, 𝑡 + 1)), 𝑡 ∈ c
{𝑘−1,… , 𝑇−2}, used to indicate the agent remaining at its goal location
after the path is completed.

The proportion 𝑋𝑎
𝑒 ∈ [0, 1] that agent 𝑎 ∈  traverses an edge 𝑒 ∈ 

can then be computed as

𝑋𝑎
𝑒 =

∑

𝑝∈𝑎

𝑥𝑝𝑒𝜆𝑝. (2)

The proportion 𝑋𝑎
𝑣 ∈ [0, 1] that agent 𝑎 ∈  visits a vertex 𝑣 =

((𝑥, 𝑦), 𝑡) ∈  can be calculated by summing the five edges incoming
to 𝑣:
𝑋𝑎

𝑣 = 𝑋𝑎
(((𝑥−1,𝑦),𝑡−1),𝑣) +𝑋𝑎

(((𝑥+1,𝑦),𝑡−1),𝑣) +𝑋𝑎
(((𝑥,𝑦−1),𝑡−1),𝑣) +

𝑋𝑎
(((𝑥,𝑦+1),𝑡−1),𝑣) +𝑋𝑎

(((𝑥,𝑦),𝑡−1),𝑣).
(3)

4.3.2. Vertex conflicts
A vertex conflict occurs at 𝑣 ∈  whenever 𝑣 is visited by more than

one agent. That is, whenever
∑

𝑎∈
𝑋𝑎

𝑣 > 1. (4)

Given a solution to the master problem, the separator for vertex con-
flicts first computes 𝑋𝑎

𝑣 for all 𝑎 ∈  and 𝑣 ∈  using Eqs. (2) and (3).
Next, it builds the constraint
∑

𝑎∈
𝑋𝑎

𝑣 ≤ 1, (5)

for every 𝑣 ∈  that satisfy Condition (4). It then substitutes for 𝑋𝑎
𝑣

in Constraint (5) using Eqs. (2) and (3), forming a constraint over the
𝜆𝑝 variables in the master problem. Finally, the separator adds this
constraint to the master problem.

4.3.3. Edge conflicts
Consider a move edge 𝑒 = ((𝑙1, 𝑡), (𝑙2, 𝑡 + 1)) ∈  where 𝑙1 ≠ 𝑙2. An

edge conflict occurs at 𝑒 whenever 𝑒 or its reverse 𝑒′ are traversed by
more than one agent. That is,
∑

𝑎∈
(𝑋𝑎

𝑒 +𝑋𝑎
𝑒′ ) > 1.

The separator for edge conflicts is similar to the separator for vertex
conflicts. The edge conflict at 𝑒 is removed by adding the constraint
∑

𝑎∈
(𝑋𝑎

𝑒 +𝑋𝑎
𝑒′ ) ≤ 1 (6)

to the master problem after substitution using Eq. (2).

4.3.4. Wait-edge conflicts
Constraint (6) permits an edge or its reverse to be used by at most

one agent. Wait-edge conflicts lift the edge conflicts by also prohibiting
a wait within the same constraint.

Fig. 2 shows a move edge 𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡+1)) ∈  where 𝑙1 ≠ 𝑙2, its
reverse 𝑒′1 = ((𝑙2, 𝑡), (𝑙1, 𝑡+ 1)) and a wait edge 𝑒2 = ((𝑙1, 𝑡), (𝑙1, 𝑡+ 1)) that
is incompatible with both 𝑒1 because of the vertex conflict at (𝑙1, 𝑡) and
with 𝑒′1 because of the vertex conflict at (𝑙1, 𝑡+1). Since the three edges
are pair-wise incompatible, at most one of 𝑒1, 𝑒′1 or 𝑒2 can be traversed.
Then, this conflict can be removed using the constraint
∑

𝑎∈
(𝑋𝑎

𝑒1
+𝑋𝑎

𝑒′1
+𝑋𝑎

𝑒2
) ≤ 1. (7)

onstraint (7) contains all the terms in Constraint (6). In the presence
f wait-edge conflict constraints, the ordinary edge conflict constraints
re redundant and can be omitted. Unlike Constraint (6), Constraint (7)
s asymmetric since swapping 𝑙1 and 𝑙2 results in a different constraint.
his cannot be reconciled by, e.g., including the edge ((𝑙2, 𝑡), (𝑙2, 𝑡 +
)) in Constraint (7) since this edge is compatible with 𝑒2. In the
mplementation, the left-hand side of both the wait edge at 𝑙1 and at 𝑙2
s computed and the constraint with the larger violation of the two is
dded. Wait-edge conflict constraints were first presented in the earlier

onference paper (Lam and Le Bodic, 2020).
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Fig. 2. A wait-edge conflict.

Fig. 3. A two-agent wait-edge conflict.

4.3.5. Two-agent wait-edge conflicts
Wait-edge conflicts span all agents. Two-agent wait-edge conflicts

exploit additional reasoning available for a pair of agents. Fig. 3 shows
an example. Consider an agent 𝑎1 ∈  fractionally using the edges
𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡 + 1)) and 𝑒2 = ((𝑙1, 𝑡), (𝑙1, 𝑡 + 1)), and another agent
𝑎2 ∈  using the edge 𝑒′1 = ((𝑙2, 𝑡), (𝑙1, 𝑡 + 1)) and an edge 𝑒3 ∈ 3 from
the set 3 of edges incoming to (𝑙1, 𝑡) = ((𝑥1, 𝑦1), 𝑡), i.e.,

3 = {(((𝑥1 − 1, 𝑦1), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥1 + 1, 𝑦1), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥1, 𝑦1 − 1), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥1, 𝑦1 + 1), 𝑡 − 1), (𝑙1, 𝑡)),

((𝑙1, 𝑡 − 1), (𝑙1, 𝑡))} ∩  .

By construction, any edge in 3 is incompatible with 𝑒′1 because agent
𝑎2 cannot be in two locations at the same time and is incompatible with
𝑒1 and 𝑒2 because of a vertex conflict at (𝑙1, 𝑡). This reasoning results in
the constraint

𝑋𝑎1
𝑒1 +𝑋𝑎1

𝑒2 +𝑋𝑎2
𝑒′1

+
∑

𝑒∈3

𝑋𝑎2
𝑒 ≤ 1. (8)

If, instead, 𝑒2 is defined as 𝑒2 = ((𝑙2, 𝑡), (𝑙2, 𝑡 + 1)), the same constraint
is valid if the set 3 is redefined as the edges outgoing from (𝑙2, 𝑡),
the edges incoming to (𝑙2, 𝑡 + 1) or the edges outgoing from (𝑙2, 𝑡 + 1).
Two-agent wait-edge conflicts are presented for the first time here.

4.3.6. Corridor conflicts
Corridor conflicts can appear when two agents fractionally cross a

space of unit height and some length in opposite directions, such as
when two agents enter a corridor or maneuver around a U-shaped bend.
Fig. 4 shows an agent 𝑎1 fractionally using 𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡 + 1)) and
𝑒2 = ((𝑙1, 𝑡+1), (𝑙2, 𝑡+2)) one timestep later, and another agent 𝑎2 using
𝑒′1 = ((𝑙2, 𝑡), (𝑙1, 𝑡 + 1)) and 𝑒′2 = ((𝑙2, 𝑡 + 1), (𝑙1, 𝑡 + 2)). These four edges
for the two agents are pair-wise incompatible. In an integer solution,
if 𝑎1 uses 𝑒1, it arrives at 𝑙2 at time 𝑡 + 1 and hence cannot use 𝑒2,
5

which would require 𝑎1 to be at 𝑙1 at time 𝑡 + 1. Agent 𝑎2 cannot use
Fig. 4. A corridor conflict.

Fig. 5. A wait-corridor conflict.

𝑒′1 because it would incur an edge conflict with 𝑎1 using 𝑒1 nor use 𝑒′2
because it would incur a vertex conflict at (𝑙2, 𝑡+1). By same arguments,
at most one of these four agent-edge pairs can be used. This leads to
the constraint

𝑋𝑎1
𝑒1 +𝑋𝑎1

𝑒2 +𝑋𝑎2
𝑒′1

+𝑋𝑎2
𝑒′2

≤ 1. (9)

Corridor conflict constraints were first presented in the previous con-
ference paper (Lam et al., 2019).

4.3.7. Wait-corridor conflicts
Wait-corridor conflicts lift the corridor conflicts in the same manner

that the wait-edge conflicts lift the edge conflicts. Fig. 5 shows a wait-
corridor conflict. The two agents are fractionally traversing the same
four edges in a corridor conflict. Agent 𝑎1 is using 𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡+1))
and 𝑒2 = ((𝑙1, 𝑡 + 1), (𝑙2, 𝑡 + 2)). Agent 𝑎2 is using 𝑒′1 = ((𝑙2, 𝑡), (𝑙1, 𝑡 + 1))
and 𝑒′2 = ((𝑙2, 𝑡 + 1), (𝑙1, 𝑡 + 2)). In addition, agent 𝑎1 is now also using
the edges 𝑒3 = ((𝑙2, 𝑡), (𝑙2, 𝑡 + 1)) and 𝑒4 = ((𝑙1, 𝑡 + 1), (𝑙1, 𝑡 + 2)). Edge
𝑒3 is incompatible with 𝑒1, 𝑒2 and 𝑒4 because the agent can only be at
one location at any given time. It is also incompatible with 𝑒′1 because
of the vertex conflict at (𝑙2, 𝑡) and incompatible with 𝑒′2 because of the
vertex conflict at (𝑙2, 𝑡+ 1). Edge 𝑒4 is also incompatible with the other
five edges for the same reasons. Hence, these six edges are pair-wise
incompatible and induce the constraint

𝑋𝑎1
𝑒1 +𝑋𝑎1

𝑒2 +𝑋𝑎1
𝑒3 +𝑋𝑎1

𝑒4 +𝑋𝑎2
𝑒′1

+𝑋𝑎2
𝑒′2

≤ 1. (10)

If wait-corridor constraints are implemented, the ordinary corridor
constraints are superseded and can be ignored. Wait-corridor conflict
constraints are first presented here.

4.3.8. Wait-delay conflicts
Fig. 6 shows a wait-delay conflict between two agents 𝑎1, 𝑎2 ∈ 

where 𝑎 ≠ 𝑎 . Agent 𝑎 is attempting to visit 𝑙 = (𝑥, 𝑦) at time 𝑡 or time
2 1 2 1
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Fig. 6. A wait-delay conflict.

𝑡 + 1 but is impeded by another agent 𝑎1 waiting at 𝑙1, i.e., traversing
𝑒1 = ((𝑙1, 𝑡), (𝑙1, 𝑡 + 1)). Let

2 = {((𝑙1, 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥 − 1, 𝑦), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥 + 1, 𝑦), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥, 𝑦 − 1), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥, 𝑦 + 1), 𝑡 − 1), (𝑙1, 𝑡)),

(((𝑥 − 1, 𝑦), 𝑡), (𝑙1, 𝑡 + 1)),

(((𝑥 + 1, 𝑦), 𝑡), (𝑙1, 𝑡 + 1)),

(((𝑥, 𝑦 − 1), 𝑡), (𝑙1, 𝑡 + 1)),

(((𝑥, 𝑦 + 1), 𝑡), (𝑙1, 𝑡 + 1))} ∩  .

The first five edges of 2 lead into (𝑙1, 𝑡). The last four edges lead into
(𝑙1, 𝑡 + 1) from a neighbor location. Agent 𝑎2 can use at most one edge
from 2 because it can only be at one location at a time and the first
five edges do not lead into the last four edges. Note that 2 excludes
((𝑙1, 𝑡), (𝑙1, 𝑡+1)) because this edge is compatible with the first five edges.
Since 𝑎1 traversing 𝑒1 and 𝑎2 traversing any edge 𝑒 ∈ 2 is incompatible
due to a vertex conflict at (𝑙1, 𝑡) or (𝑙1, 𝑡 + 1), the wait-delay conflict
constraint is

𝑋𝑎1
𝑒1 +

∑

𝑒∈2

𝑋𝑎2
𝑒 ≤ 1. (11)

Wait-delay conflict constraints were first presented in the conference
paper (Lam and Le Bodic, 2020).

4.3.9. Exit-entry conflicts
Exit-entry conflicts are similar to wait-delay conflicts. Fig. 7 shows

an agent 𝑎1 ∈  moving from 𝑙1 = (𝑥1, 𝑦1) to 𝑙2 = (𝑥2, 𝑦2) at time 𝑡, i.e., it
takes the edge 𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡 + 1)). Consider another agent 𝑎2 ∈ ,
𝑎2 ≠ 𝑎1, with a set of edges

2 = {((𝑙1, 𝑡), (𝑙1, 𝑡 + 1)),

((𝑙1, 𝑡), ((𝑥1 − 1, 𝑦1), 𝑡 + 1)),

((𝑙1, 𝑡), ((𝑥1 + 1, 𝑦1), 𝑡 + 1)),

((𝑙1, 𝑡), ((𝑥1, 𝑦1 − 1), 𝑡 + 1)),

((𝑙1, 𝑡), ((𝑥1, 𝑦1 + 1), 𝑡 + 1)),

((𝑙2, 𝑡), (𝑙2, 𝑡 + 1)),

(((𝑥2 − 1, 𝑦2), 𝑡), (𝑙2, 𝑡 + 1)),

(((𝑥2 + 1, 𝑦2), 𝑡), (𝑙2, 𝑡 + 1)),

(((𝑥2, 𝑦2 − 1), 𝑡), (𝑙2, 𝑡 + 1)),

(((𝑥2, 𝑦2 + 1), 𝑡), (𝑙2, 𝑡 + 1)),

((𝑙2, 𝑡), (𝑙1, 𝑡 + 1))} ∩  .

The first five edges in 2 exit (𝑙1, 𝑡). The next five edges enter (𝑙2, 𝑡+ 1).
The last edge is the reverse of 𝑒1. Note that some of the edges in 2 can
6

be duplicates, which are removed because 2 is a set. All edges in 2
Fig. 7. An exit-entry conflict.

Fig. 8. A two-edge conflict.

use the same timestep, and hence, are pairwise incompatible. The first
five edges have a vertex conflict with 𝑒1 at (𝑙1, 𝑡). The next five edges
ave a vertex conflict with 𝑒1 at (𝑙2, 𝑡+1). The final edge is incompatible
ith 𝑒1 by the definition of an edge conflict. Using this reasoning, the
xit-entry conflict constraint is
𝑎1
𝑒1 +

∑

𝑒∈2

𝑋𝑎2
𝑒 ≤ 1. (12)

xit-entry conflict constraints were first presented in the conference
aper (Lam and Le Bodic, 2020).

.3.10. Two-edge conflicts
Fig. 8 illustrates three distinct locations 𝑙1, 𝑙2, 𝑙3 such that 𝑙1 and 𝑙3

re neighbors of 𝑙2. Consider an agent 𝑎1 ∈  fractionally using two
dges 𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡 + 1)) and 𝑒2 = ((𝑙2, 𝑡), (𝑙3, 𝑡 + 1)). In an integer
olution, 𝑎1 can use at most one of these two edges since they occur
t the same time. Denote their reverse edges as 𝑒′1 = ((𝑙2, 𝑡), (𝑙1, 𝑡 + 1))
nd 𝑒′2 = ((𝑙3, 𝑡), (𝑙2, 𝑡 + 1)). If 𝑎1 uses either 𝑒1 or 𝑒2, then another agent
2 ∈ , 𝑎2 ≠ 𝑎1, cannot simultaneously use 𝑒′1 and 𝑒′2. The edge 𝑒′1
s incompatible with 𝑒1 because of an edge conflict and incompatible
ith 𝑒2 because of a vertex conflict at (𝑙2, 𝑡). For the same reasons, 𝑒′2 is

ncompatible with 𝑒1 and 𝑒2. These ideas lead to the two-edge conflict
onstraint
𝑎1
𝑒1 +𝑋𝑎1

𝑒2 +𝑋𝑎2
𝑒′1

+𝑋𝑎2
𝑒′2

≤ 1. (13)

wo-edge conflict constraints were first presented in the conference
aper (Lam and Le Bodic, 2020).

.3.11. Wait-two-edge conflicts
Wait-two-edge conflicts lift the two-edge conflicts with an addi-

ional wait edge, as shown in Fig. 9. Consider an agent 𝑎1 using the
dges 𝑒1 = ((𝑙1, 𝑡), (𝑙2, 𝑡+ 1)), 𝑒2 = ((𝑙2, 𝑡), (𝑙3, 𝑡+ 1)) and 𝑒3 = ((𝑙2, 𝑡), (𝑙2, 𝑡+
1)). Also consider another agent 𝑎2 using 𝑒′1 = ((𝑙2, 𝑡), (𝑙1, 𝑡 + 1)), 𝑒′2 =
((𝑙3, 𝑡), (𝑙2, 𝑡 + 1)) and 𝑒3.

Agent 𝑎1 taking edge 𝑒3 is incompatible with agent 𝑎2 taking edges
𝑒′1 because of a vertex conflict at (𝑙2, 𝑡) and 𝑒′2 and 𝑒3 because of a vertex
conflict at (𝑙2, 𝑡 + 1). Using similar reasoning, all three edges for agent
𝑎1 are incompatible with the three edges of agent 𝑎2. This leads to the
constraint

𝑋𝑎1
𝑒 +𝑋𝑎1

𝑒 +𝑋𝑎1
𝑒 +𝑋𝑎2

′ +𝑋𝑎2
′ +𝑋𝑎2

𝑒 ≤ 1. (14)

1 2 3 𝑒1 𝑒2 3
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Fig. 9. A wait-two-edge conflict.

Fig. 10. A rectangle conflict.

If wait-two-edge conflict constraints are included, the regular two-edge
conflict constraints can be omitted. Wait-two-edge conflict constraints
are presented here for the first time.

4.3.12. Rectangle conflicts
The previous eight classes of conflicts attempt to tighten the master

problem by summing combinations of Constraints (5) and (6) within
one constraint. In contrast, rectangle conflicts reason directly about the
MAPF structure, and therefore, are applicable in other algorithms such
as CBS.

In fact, rectangle conflicts are originally developed for CBS (Li et al.,
2019). The idea is that two agents entering and exiting a rectangle at
precisely the right time must sustain a vertex conflict somewhere within
the rectangle. Consider two agents 𝑎1 and 𝑎2 entering the gray rectangle
in Fig. 10. If the two agents use a single-agent-optimal path (i.e., a path
without waiting), the agents will always conflict somewhere within the
rectangle. Let the (time-indexed) edges of the two sides used by 𝑎1 (the
left and right sides in Fig. 10) be 1 ⊂  . Let the (time-indexed) edges
of the two sides used by 𝑎2 (the top and bottom sides in Fig. 10) be
2 ⊂  . The edges 1 and 2 are timed precisely so that the two agents
will conflict somewhere inside the rectangle. Then, rectangle conflicts
are implemented using the constraint
∑

𝑒∈1

𝑋𝑎1
𝑒 +

∑

𝑒∈2

𝑋𝑎2
𝑒 ≤ 3. (15)

Constraint (15) stipulates that at most three of the four sides can be
used at those exact timesteps. Note that the constraint is valid even
when any of the locations in the rectangle are obstacles. The correctness
of this constraint relies on the proof given by Li et al. (2019). Rectangle
conflict constraints were adapted to BCP in the original conference
paper (Lam et al., 2019).

4.3.13. Step-aside conflicts
Fig. 11 shows a corridor of unit width and length ℎ = 4 drawn in

gray. The locations of the two ends are denoted 𝑙1 and 𝑙4. If agent 𝑎1
needs to get from 𝑙1 to 𝑙4 and agent 𝑎2 needs to get from 𝑙4 to 𝑙1, then
one of the two agents must step out of the corridor to let the other pass
then step back in, incurring a cost of at least two extra movements on
7

Fig. 11. A step-aside conflict.

Fig. 12. A goal conflict.

top of its direct path. In other words, the agent cannot take the direct
path nor take a path with one extra movement.

More formally, 𝑎1 crosses from 𝑙1 to 𝑙2 at time 𝑡 or 𝑡+1, and then exits
the corridor from 𝑙3 to 𝑙4 at time 𝑡+ℎ or 𝑡+ℎ+1. (If 𝑎1 enters at 𝑡 and exits
at 𝑡+ℎ+1, then it waited for one timestep inside the corridor.) Let the
edges of these crossings be 𝑒11 = ((𝑙1, 𝑡), (𝑙2, 𝑡+1)), 𝑒12 = ((𝑙1, 𝑡+1), (𝑙2, 𝑡+2)),
1
3 = ((𝑙3, 𝑡 + ℎ), (𝑙4, 𝑡 + ℎ + 1)) and 𝑒14 = ((𝑙3, 𝑡 + ℎ + 1), (𝑙4, 𝑡 + ℎ + 2)).

Agent 𝑎2 enters the corridor from the opposite end 𝑙4 at time 𝑡 or
+1 and exits from 𝑙2 to 𝑙1 at time 𝑡+ℎ or 𝑡+ℎ+1. Let the edges of 𝑎2 be
2
1 = ((𝑙4, 𝑡), (𝑙3, 𝑡+1)), 𝑒22 = ((𝑙4, 𝑡+1), (𝑙3, 𝑡+2)), 𝑒23 = ((𝑙2, 𝑡+ℎ), (𝑙1, 𝑡+ℎ+1))
nd 𝑒24 = ((𝑙2, 𝑡 + ℎ + 1), (𝑙1, 𝑡 + ℎ + 2)).

These four crossings cannot occur together because the two agents
ill collide somewhere within the corridor. Hence, at most three of

hese eight edges can occur. This condition is enforced by the constraint
𝑎1
𝑒11

+𝑋𝑎1
𝑒12

+𝑋𝑎1
𝑒13

+𝑋𝑎1
𝑒14

+𝑋𝑎2
𝑒21

+𝑋𝑎2
𝑒22

+𝑋𝑎2
𝑒23

+𝑋𝑎2
𝑒24

≤ 3. (16)

tep-aside conflicts are new to this journal paper.

.3.14. Goal conflicts
All the previous classes of conflicts reason about a set of incompati-

le edges traversed by a set of agents. The constraints prohibiting these
onflicts are expressed as a sum over agents and edges. In contrast, goal
onflicts reason about whole paths and hence their constraints cannot
e expressed as a sum over edges.

Fig. 12 shows two agents involved in a goal conflict. Agent 𝑎pass ∈ 
s (fractionally) passing through the goal location 𝑙 ∶= 𝑔𝑎goal ∈ 
f another agent 𝑎goal ∈  at some time 𝑡 after 𝑎goal has already
fractionally) reached its goal. Goal conflicts are resolved using the
onstraint
∑

∈𝑎goal

𝑊 𝑝
𝑡 𝜆𝑝 +

∑

𝑝∈𝑎pass

𝑄𝑝
𝑙,𝑡𝜆𝑝 ≤ 1, (17)

here 𝑊 𝑝
𝑡 takes value 1 if path 𝑝 finishes at time 𝑡 or earlier, and takes

alue 0 otherwise, and 𝑄𝑝
𝑙,𝑡 takes value 1 if path 𝑝 visits location 𝑙 at

ime 𝑡 or later, and takes value 0 otherwise. This constraint restricts the
olution so that either 𝑎goal reaches its goal location 𝑙 at or before time 𝑡
nd remains there, or 𝑎pass passes through location 𝑙 at or after time 𝑡, or
either. At most one of these two events can occur since 𝑎goal will wait
ndefinitely at 𝑙 if it reaches its goal location. Goal conflict constraints
ere first presented in the conference paper (Lam and Le Bodic, 2020).



Computers and Operations Research 144 (2022) 105809E. Lam et al.

f
𝑎
b
a

4

v
c
c
r
a
m
p
e
f
s
p
p

F
o
u
o
r

t

𝑎

o

v
e

1

N

a

𝑎
(

i

v

w

v
i
r
2
(
b
−
p
p
t
s
I

r
a
t
𝑄
c

i
𝑗
i
T
p
e
𝑙
𝜎
o
𝑡
i
p
t
t

𝑝
o

𝑐

w
p
i
p
f
i
(
d
g
t

𝑐
c

4.4. Finding lower cost paths

The set 𝑎 of candidate paths for every agent 𝑎 ∈  is dynamically
illed by the pricer. The pricer solves the pricing problem of every agent
∈  to either find one or more paths that may appear in a solution

etter than the current solution to the master problem, or prove that
n improving path does not exist.

.4.1. The pricing problem
According to well-known results from linear programming, any

ariable that appears in a (future) solution with a cost lower than the
urrent solution must have negative reduced cost. In BCP, the reduced
ost of a variable measures the cost-effectiveness of an agent using the
esources (i.e., vertex, edge or goal location) of a path compared against
ll other paths using the same resource in the current solution of the
aster problem. The pricing problem is a resource-constrained shortest
ath problem on the reduced cost instead of the regular unit cost per
dge. For each agent 𝑎 ∈  in turn, the pricer calls the A* algorithm to
ind a path with negative reduced cost, and if one exists, adds it to 𝑎,
o that the master problem may select it in the next iteration. If such a
ath cannot be found for any agent, the current solution to the master
roblem is optimal.

There are four main considerations for defining the reduced cost.
irstly, according to Constraint (1b), every agent must use exactly
ne path. This constraint can be viewed as restricting each agent to
se exactly one ‘‘path resource’’. Let 𝜋𝑎 ∈ R be the dual variable
f Constraint (1b) for agent 𝑎. As every path will consume one ‘‘path
esource’’, the reduced cost of every path is penalized by −𝜋𝑎.

Secondly, consider the constraints for all classes of conflicts except
he goal conflicts (i.e., Constraints (5) to (16)). Let  denote the set

of these constraints that currently exist in the master problem. Every
conflict constraint 𝑖 ∈  can be written in the form
∑

∈

∑

𝑒∈
𝛼𝑎𝑖,𝑒𝑋

𝑎
𝑒 ≤ 𝛽𝑖, (18)

where 𝛼𝑎𝑖,𝑒 ≥ 0 and 𝛽𝑖 ≥ 0 are constants. Let 𝜋𝑖 ≤ 0 be the dual variable
f constraint 𝑖 ∈  as defined by linear programming theory.

If a path 𝑝 traverses an edge 𝑒, this action must be penalized by the
alue of the dual variable of all constraints that include 𝑒. Formally,
very edge 𝑒 ∈  has reduced cost

+
∑

𝑖∈
− 𝜋𝑖𝛼

𝑎
𝑖,𝑒. (19)

otice that the summation is non-negative because every 𝜋𝑖 ≤ 0
and 𝛼𝑎𝑖,𝑒 ≥ 0. Hence, the summation can be interpreted as a cost
penalty for the agent using edge 𝑒 compared against every other path
(belonging to the same agent or a different agent) using the same edge
in the current solution of the master problem. Adding more of these
conflict constraints to the master problem simply adds more penalties
to summation and does not impact the A* algorithm in any other way.

Thirdly, consider a path of length 𝑘, as defined in Section 2. Using
this path means that agent 𝑎 departs its start location 𝑠𝑎 at time 0
(i.e., the path starts at the vertex (𝑠𝑎, 0)), reaches its goal location 𝑔𝑎
t time 𝑘 − 1 (i.e., the path ends at the vertex (𝑔𝑎, 𝑘 − 1)) and then

remains at its goal location indefinitely. However, at some time 𝑡 ≥ 𝑘,
another agent may still be in motion and may want to cross the goal
location 𝑔𝑎 of agent 𝑎. Hence, it is not sufficient to plan a path for agent

from (𝑠𝑎, 0) to (𝑔𝑎, 𝑘− 1) because a vertex conflict at (𝑔𝑎, 𝑡) may occur
i.e., after the path ends at time 𝑘 − 1).

To handle this situation, the pricing problem operates on an aux-
liary graph ⊥ = (⊥, ⊥). Let ⊥ be a dummy goal vertex that is

accessible only from the actual goal location 𝑔𝑎. Define the set of
ertices ⊥ =  ∪{⊥} and the set of edges ⊥ =  ∪{((𝑔𝑎, 𝑡), ⊥) ∶ 𝑡 ∈  }.

The edge ((𝑔𝑎, 𝑡), ⊥) is used to indicate that the agent reaches its goal
8

location at time 𝑡 and then waits indefinitely. The pricing problem
attempts to find a path on ⊥ with negative reduced cost from vertex
(𝑠𝑎, 0) to vertex ⊥. For every 𝑡 ∈  , the edge ((𝑔𝑎, 𝑡), ⊥) has reduced cost
∑

𝑖∈(𝑔𝑎,𝑡)

− 𝜋𝑖

here (𝑔𝑎 ,𝑡) ⊂  are the constraints that include any wait edge
((𝑔𝑎, 𝑡′), (𝑔𝑎, 𝑡′ +1)) where 𝑡′ ∈ {0,… , 𝑡}. All penalties due to finishing at
time 𝑡 and then waiting at the goal location indefinitely are penalized
solely using the edge ((𝑔𝑎, 𝑡), ⊥).

It is easy to see this is valid using an example. For some time 𝑡,
consider two vertex conflict constraints at (𝑔𝑎, 𝑡−1) and (𝑔𝑎, 𝑡) with dual
ariables 𝜋1 and 𝜋2. According to Constraint (5), these two constraints
nclude the incoming edges ((𝑔𝑎, 𝑡 − 2), (𝑔𝑎, 𝑡 − 1)) and ((𝑔𝑎, 𝑡 − 1), (𝑔𝑎, 𝑡))
espectively. Should the pricing problem find a path that ends at (𝑔𝑎, 𝑡−
), it will not incur the penalty −𝜋1 because the path never traverses
(𝑔𝑎, 𝑡−2), (𝑔𝑎, 𝑡−1)), even though the agent waits at 𝑔𝑎. Hence, −𝜋1 must
e added to the reduced cost of edge ((𝑔𝑎, 𝑡−2), ⊥). Similarly, the penalty
𝜋2 is also added to the reduced cost of ((𝑔𝑎, 𝑡 − 2), ⊥) because the
ath does not traverse ((𝑔𝑎, 𝑡−1), (𝑔𝑎, 𝑡)). In contrast, should the pricing
roblem find a path that ends at (𝑔𝑎, 𝑡), the penalty −𝜋1 is not added
o any edge with ⊥ because, to reach (𝑔𝑎, 𝑡), the agent must have used
ome edge leading to (𝑔𝑎, 𝑡), which may or may not be ((𝑔𝑎, 𝑡−1), (𝑔𝑎, 𝑡)).
f it is ((𝑔𝑎, 𝑡 − 1), (𝑔𝑎, 𝑡)), then −𝜋2 is paid using Eq. (19).

The final consideration is the goal conflict constraints. Goal conflicts
eason about the occurrence of events along a path, rather than about
set of edges. There is currently no mechanism in the pricing problem

o penalize the occurrence of the events corresponding to 𝑊 𝑝
𝑡 = 1 and

𝑝
𝑙,𝑡 = 1. Hence, the A* algorithm must be modified to handle goal

onflict constraints.
Let  be the set of goal conflict constraints (Constraint (17)) existing

n the master problem and let 𝜇𝑗 ≤ 0 be the dual variable of constraint
∈  . When pricing 𝑎pass, the path must be penalized by −𝜇𝑗 ≥ 0

f it visits the goal location 𝑙 of constraint 𝑗 ∈  at or after time 𝑡.
he penalty is incurred exactly once, no matter how many times the
ath visits 𝑙 after 𝑡. Therefore, placing a penalty on the five incoming
dges to (𝑙, 𝑡′) for all 𝑡′ ≥ 𝑡 is not correct because entering and exiting
repeatedly will penalize the path multiple times. Instead, a state
𝑗 , initialized to 0, is introduced to the A* algorithm to track the
ccurrence of the event and penalize the path once if it visits 𝑙 at time
or later. Upon expanding the vertex (𝑙, 𝑡′) for any 𝑡′ ≥ 𝑡, the penalty

s incurred and 𝜎𝑗 is set to 1 to indicate that the penalty has been
aid. Future expansions through (𝑙, 𝑡′′) for any 𝑡′′ > 𝑡′ will not incur
he penalty again because 𝜎𝑗 = 1. When pricing 𝑎goal, all edges leading
o ⊥ at or before time 𝑡 incurs the penalty −𝜇𝑗 .

In consideration of these four points, the reduced cost 𝑐𝑝 of a path
with length 𝑘 can now be defined. That is, 𝑐𝑝 is the total reduced cost
f 𝑝 including all relevant penalties. Formally,

̄𝑝 = 𝑐𝑝 − 𝜋𝑎 −
∑

𝑒∈𝑝

(

1 −
∑

𝑖∈
𝜋𝑖𝛼

𝑎
𝑖,𝑒

)

−
∑

𝑖∈(𝑔𝑎,𝑘−1)

𝜋𝑖 −
∑

𝑗∈ ∶𝑎=𝑎pass

𝜇𝑗𝑄
𝑝
𝑙,𝑡

−
∑

𝑗∈ ∶𝑎=𝑎goal

𝜇𝑗𝑊
𝑝
𝑡 ,

here the first summation is over the edges in path 𝑝. From linear
rogramming theory, 𝑝 may appear in a better solution if 𝑐𝑝 < 0. If so, 𝑝
s added to 𝑎, leading to another round of solving the master problem,
ricing new paths and resolving conflicts. If the pricing problem cannot
ind a path 𝑝 with 𝑐𝑝 < 0 for any agent 𝑎 ∈ , then no path can
mprove upon the current master problem solution, which is declared
fractionally) optimal. The reduced costs allows agents to cooperate to
ecrease the total cost. An agent can use a resource (vertex, edge or
oal location) in use by another agent if it overall gains no less than
he other agents lose.

For a partial path 𝑝 ending at vertex 𝑣 ∈ ⊥ with reduced cost
̄𝑝, the A* algorithm requires a function, called the heuristic ℎ(𝑣), that
omputes a lower bound on the cost to-go from the current vertex
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Fig. 13. Two partial paths demonstrating the dominance condition for goal conflict constraints.
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to ⊥. We use a heuristic based on two segments: from vertex 𝑣 to
he goal location 𝑔𝑎 and then from 𝑔𝑎 to ⊥. For any 𝑣 = (𝑙, 𝑡), define
(𝑙) as the distance of the non-time-indexed shortest path from 𝑙 to
𝑎, which is precomputed. As the distance is equal to time, ℎ(𝑙) also
ives the minimum number of timesteps to reach 𝑔𝑎 from 𝑙. Next, define
⊥(𝑡) = min𝑡′∈{𝑡,…,𝑇−1}{𝑡′−𝑡+

∑

𝑖∈(𝑔𝑎,𝑡′)
−𝜋𝑖} as a lower bound on the cost

f waiting at 𝑔𝑎 from time 𝑡 to time 𝑡′ and then entering ⊥ at time 𝑡′. We
se ℎ(𝑣) = ℎ(𝑙)+ℎ⊥(𝑡+ℎ(𝑙)), which consists of moving from 𝑙 to the goal
ocation 𝑔𝑎 and then waiting to enter the dummy end location until the
ime that minimizes the penalties for waiting at the goal location (if
ny). Then, a lower bound 𝑓𝑝 on the total reduced cost of 𝑝 (i.e., from
he start location to ⊥) is given by 𝑓𝑝 = 𝑐𝑝+ℎ(𝑣), comprising the reduced
ost from the starting location to the current vertex plus a lower bound
n the cost from the current vertex to the end.

In the ordinary A* algorithm (outside BCP), if two partial paths
1, 𝑝2 end at a common vertex 𝑣 with lower bounds 𝑓1, 𝑓2 on their total
ost and 𝑓1 ≤ 𝑓2, then 𝑝1 is said to dominate 𝑝2 and 𝑝2 can be discarded
ecause every extension of 𝑝2 to the goal cannot be better than the same
xtension of 𝑝1. (In the case of 𝑓1 = 𝑓2, then one of the two paths must
e kept.) In BCP, because the goal conflict constraints require states
𝑗 to track whether a penalty has been paid, the dominance condition
ust also consider these states.

Fig. 13(a) shows two partial paths ending at (B,2) and their costs at
ach step along the path. There is an edge penalty of 0.5 for moving
rom B to A at time 0. There is also a goal conflict penalty of 1 for
assing through location 𝐶 at or after time 1. The top (blue) partial
ath has cost 2.5, which includes the edge penalty. The bottom (red)
artial path has cost 3, which includes the goal penalty. According to
he usual dominance rule, the bottom path has higher cost than the top
ath and can be discarded. However, this is not correct when using goal
onflict constraints. Fig. 13(b) shows these two partial paths extended
wo steps to the goal at D. The bottom path has previously passed
hrough the goal conflict location C at time 1 and has already paid
he penalty whereas the top path has not. The top path now incurs the
enalty and reaches (D,4) with cost 5.5. The bottom path reaches (D,4)
ith cost 5 and hence should not have been dominated at (B,2).

To correctly account for the goal conflicts, the following dominance
ule is required:

1 +
∑

𝑗∈ ∶
𝜎1𝑗 =0∧

𝜎2𝑗 =1

− 𝜇𝑗 ≤ 𝑓2

here 𝜎1𝑗 indicates whether 𝑝1 has passed the goal location of the
oal conflict constraint 𝑗 ∈  . Recall that 𝜇𝑗 ≤ 0 for all 𝑗 ∈  .
his dominance rule says that, even after path 𝑝1 pays the penalty
f all goal conflicts that it has not yet paid but that path 𝑝2 has
lready paid, its cost is still lower than 𝑝2, then it dominates 𝑝2. This
ominance rule is also used in branch-and-cut-and-price algorithms for
ther problems (e.g., Equation (39) of Jepsen et al. (2008)). According
o this dominance rule, neither path in Fig. 13(a) dominates the other
nd hence both must be extended towards the goal.

Because the pricing problem is solved using A* with an admissible
euristic, a path with negative reduced cost will be found if and only
f it exists. Therefore, the pricer is correct and complete.
9

.4.2. Caching solutions in A*
The pricer calls A* to generate paths repeatedly throughout the

earch tree. Even if an agent is not in conflict, the pricer needs to call
* on this agent to verify that changes to the selection of paths for

he other agents do not lead to an improved path for this agent. This
s very costly, especially if the agent is so far away from the conflicts
hat resolving these conflicts has no effect on the agent. We mitigate
his issue using a caching procedure that recalls past solutions for this
gent.

The A* search implementation is modified to mark all data it uses
the edge penalties and the penalties of the events of the goal conflict
onstraints) during the search. If A* fails to find a new path, these data
re then stored in a database. In the next call to A* for the same agent,
he new edge penalties and the penalties of the goal conflict constraints
re queried in the database. If the penalties are the same or worse, then
o improving path is possible for this agent, and hence, A* does not
eed to be called.

.5. Resolving fractionalities

The master problem is a linear programming problem, which often
roduces fractional solutions. For example, given an agent 𝑎 ∈ 
nd two paths 𝑝1, 𝑝2 ∈ 𝑎, we can have 𝜆𝑝1 = 𝜆𝑝2 = 0.5. Whenever
he pricer declares that a solution with at least one variable taking

fractional value is optimal, branching must proceed to resolve the
ractionality. Branching splits the current node in the search tree into
wo children nodes such that the current fractional solution appears in
either children.

.5.1. Branching on vertices
The first branching rule branches on an agent-vertex pair, stipulat-

ng that an agent 𝑎 ∈  must visit a vertex 𝑣 ∈  in one child and
ust not visit 𝑣 in the other child. Using Eq. (3) and the solution to

he master problem, the branching rule first computes the number of
imes 𝑋𝑎

𝑣 that each vertex 𝑣 ∈  is visited by agent 𝑎 ∈ , and then
calculates the number of times

𝑋𝑣 =
∑

𝑎∈
𝑋𝑎

𝑣

hat each vertex 𝑣 ∈  is visited by all agents. Because branching
ccurs after all separators have declared that the solution to the master
roblem exhibits no conflicts, 𝑋𝑣 ≤ 1 for all 𝑣 ∈  .

Next, the branching rule builds the set

𝑣 =
{

𝑎 ∈  ∶ 𝑋𝑎
𝑣 > 0

}

f agents visiting each vertex 𝑣 ∈  . The branching rule then selects a
vertex

𝑣∗ = arg min
𝑣=(𝑙,𝑡)∈

{𝑡 ∶ 0 < 𝑋𝑣 < 1 ∧ |𝑣| ≥ 2}

hat has fractional value and is used by two or more agents, favoring
he vertex with the earliest time. Next, it selects an agent
∗ = arg min{𝑐𝑝 ∶ 𝑝 ∈ 𝑎 ∧ 𝜆𝑝 > 0}
𝑎∈∗
𝑣
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that is (fractionally) using a path visiting 𝑣∗ and has a path of the
shortest length among all used paths visiting 𝑣∗. The branching rule
then creates two children nodes. In one child, agent 𝑎∗ must visit 𝑣∗.
In the other child, 𝑎∗ cannot visit 𝑣∗.

The decisions made by branching must be enforced in the master
problem and the pricing problem of each child. If 𝑣∗ cannot be visited,
all paths that visit 𝑣∗ are disabled in the master problem and the five
incoming edges to 𝑣∗ are removed in the pricing problem, preventing
new paths from visiting 𝑣∗.

If 𝑣∗ must be visited, the goal in the A* search for agent 𝑎∗ is set
to the vertex 𝑣∗, instead of any vertex associated with the actual goal
location 𝑔𝑎. Now the pricer will find a partial path from the starting
vertex (𝑠𝑎, 0) to 𝑣∗. Next, the pricer is called again to find a partial
path from 𝑣∗ to any vertex associated with the goal location 𝑔𝑎. Since
every vertex is associated with a time, the mandatory vertex 𝑣∗ of all
branching decisions can be ordered in a sequence, and A* is called for
every adjacent pair of vertices in the sequence. Upon completion, all
partial paths are concatenated to form a path from 𝑠𝑎 to 𝑔𝑎 via detours
to all mandatory vertices 𝑣∗.

4.5.2. Branching on path length
Bounding the length of all paths for an agent at a particular node in

the search tree bounds its cost in the entire subtree below. In particular,
fixing the length of all paths for an agent fixes its cost, regardless of
the vertices it visits. In contrast, fixing a vertex to be used or unused
only indirectly affects the cost by rerouting the agent. Therefore, it is
beneficial to fix path lengths early in the search. BCP employs a tiered
branching rule that first branches on path length and only branches on
vertices (as in Section 4.5.1) once every path used by an agent has the
same length.

The second branching rule begins by calculating the set

 = {𝑎 ∈  ∶ ∃𝑝1, 𝑝2 ∈ 𝑎, 𝜆𝑝1 > 0, 𝜆𝑝2 > 0, 𝑐𝑝1 ≠ 𝑐𝑝2}

of agents fractionally using paths with different costs (i.e., different
lengths). From , the branching rule chooses an agent 𝑎 and a path
𝑝 of smallest cost that is fractionally used, i.e.,

(𝑎∗, 𝑝∗) = arg min
𝑎∈ ,𝑝∈𝑎

{𝑐𝑝 ∶ 𝜆𝑝 > 0}.

It then creates two children nodes. In the left child, 𝑎∗ only uses paths
with cost less than or equal to 𝑐𝑝∗ . In the right child, 𝑎∗ only uses paths
with cost greater than or equal to 𝑐𝑝∗ + 1.

After making one of these decisions, it must be enforced in the
master problem and pricing problem. In the case of requiring the cost
of all paths of agent 𝑎∗ to be less than or equal to 𝑐𝑝∗ , the goal in the
A* search is set to any vertex (𝑔𝑎, 𝑡) ∈  where 𝑡 ∈ {0,… , 𝑐𝑝∗}. (Recall
from Section 2 that the length is the number of vertices whereas the
cost is the number of edges.) Using the heuristic in A*, all expansions
with a time greater than 𝑐𝑝∗ are also discarded and not added to the
priority queue for future expansion. A similar process occurs in the case
of requiring paths whose cost is greater than or equal to 𝑐𝑝∗ + 1. The
goal is set to any vertex (𝑔𝑎, 𝑡) ∈  where 𝑡 ∈ {𝑐𝑝∗ + 1,… , 𝑇 − 1}.

After each branching decision, the A* search will be required to
find paths whose cost lies within increasingly smaller intervals. BCP
switches to the vertex branching rule described in Section 4.5.1 when
 = ∅, signifying that all agents are using paths of the same length.

Recall that BCP uses fractional solutions (i.e., relaxation) to find
lower bounds. At any node in the branch-and-bound search tree, if the
node lower bound is higher than the global upper bound, the node
is pruned, regardless of whether the solution is fractional, because
solutions in the subtree below can only have the same or higher cost.
The left child of this branching rule drives the search towards paths of
shortest length. The right child coerces the lower bound up. In conjunc-
tion, this branching rule aims to quickly find good solutions (i.e., tight
upper bounds) in the left child and then prove their optimality by
proving suboptimality in the right child.
10
5. Experiments

This section evaluates the empirical performance of BCP in two
experiments. BCP uses SCIP 7.0.3 (Gamrath et al., 2020) for the integer
programming branch-and-bound tree search, Gurobi 9.1 for solving the
linear programming master problem and a custom implementation of
the A* algorithm for the pricing problem. The source code is available
online.1

The experiments are run on an Intel Xeon Platinum 8260 CPU at
2.4 GHz with a time limit of five minutes and a memory limit of 8 GB.
All algorithms are single-threaded.

5.1. Comparison against other algorithms

The first experiment evaluates two variants of BCP against two other
leading MAPF algorithms. The first variant of BCP is a minimally-
working baseline, which only contains the vertex conflict constraints
(Section 4.3.2), edge conflict constraints (Section 4.3.3) and vertex
branching (Section 4.5.1). The second variant is the full algorithm,
comprising all of the improvements detailed in Section 4. Specifically,
it includes all valid inequalities (Sections 4.3.4–4.3.12 and 4.3.14),
A* solution caching (Section 4.4.2) and path length branching Sec-
tion 4.5.2. The two versions of BCP are compared against CBSH2-RTC,2
a new variant of CBS that adds generalized rectangle reasoning and
generalized corridor reasoning, and the latest version of Lazy CBS,3
which includes rectangle reasoning and enhancements to its underlying
constraint programming solver.

The algorithms are evaluated on two sets of standard benchmarks.
The first contains 670 instances across two maps representative of
warehouses.4 There are between 10 and 30 instances for any given
umber of agents. The second consists of 3760 instances across 14 maps
rom the Moving AI repository (Sturtevant, 2019), consisting of 10
nstances for any given number of agents. This collection includes many
aps. Each map contains scenarios categorized as even or random

according to the distribution of the start and goal positions. Due to
the large number of instances, the algorithms are compared using the
random instances from a subset of 14 maps selected to include a wide
variety of structures. This experiment spans 4430 instances over 16
maps in total.

Fig. 14 plots the percentage of solved instances against the number
of agents. The percentage is computed across a varying number of
instances for the warehouse maps but exactly 10 instances for the
Moving AI maps. The improvements to BCP clearly enable substantially
better performance compared to the baseline algorithm. Therefore the
remainder of this section focuses on the full algorithm.

BCP mostly outperforms Lazy CBS and CBSH2-RTC on the two
warehouse maps, losing to CBSH2-RTC on two instances of 10x30-w5
with 24 agents and to Lazy CBS on one instance of 31x79-w5 with 48
agents. BCP solves 634 of the 670 warehouse instances, compared to
559 by Lazy CBS and 593 by CBSH2-RTC. CBSH2-RTC has improved
substantially since the last evaluation almost two years ago (Lam and
Le Bodic, 2020), when it performed poorly on the warehouse maps and
could not solve any of the 31x79-w5 instances with 52 agents.

Lazy CBS has also made massive improvements since the last com-
parison. On the two city maps Berlin_1_256 and Paris_1_256,
Lazy CBS is now pushing beyond 300 agents. BCP is behind on
Berlin_1_256 but slightly ahead on Paris_1_256. In total, BCP
solves 504 instances of the city maps, while Lazy CBS solves 510 and
CBSH2-RTC solves 406.

1 https://github.com/ed-lam/bcp-mapf
2 https://github.com/Jiaoyang-Li/CBSH2-RTC
3 https://bitbucket.org/gkgange/lazycbs/
4
 The warehouse instances are provided by Jiaoyang Li.

https://github.com/ed-lam/bcp-mapf
https://github.com/Jiaoyang-Li/CBSH2-RTC
https://bitbucket.org/gkgange/lazycbs/
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Fig. 14. Success rate of the algorithms by map. Higher is better.
_n

The performance of the algorithms vary drastically on the brc202d,

orz900d, w_woundedcoast, ost003d and lt_gallowstemplar
maps from the Dragon Age series of games. BCP dominates on these five
game maps, sometimes quite significantly. Lazy CBS struggles on the
first three of these five maps, which contain narrow hallways, and has
regressed on orz900d, where it previously solved several instances
with 10 or fewer agents. Overall, BCP, Lazy CBS and CBSH2-RTC
respectively solve 592, 277 and 364 instances of the 1500 instances.

The next four maps are structured. The first two are empty 8 × 8
and 32 × 32 grids. In the last two maps, 10% and 20% of the passable
cells in empty-32-32 are replaced with obstacles. On empty-8-8,
where contention is high, BCP solves almost all instances. On the larger
empty-32-32, Lazy CBS completely dominates BCP and CBSH2-RTC.
As more obstacles are added, its lead drops considerably, losing to BCP
with 20% obstacles. Of the 1060 instances on these four maps, BCP
solves 491 instances, Lazy CBS solves 551 instances and CBSH2-RTC
solves 415 instances.
11
The last three maps are mazes with a corridor width of 1, 2 and
10 cells respectively. Last year, all three algorithms perform simi-
larly poorly on the extremely difficult maze-128-128-1. Since then,
CBSH2-RTC has improved significantly and now vastly outperforms
BCP and Lazy CBS due to the introduction of corridor-target symmetry
handling. On the maze with corridor width 2, CBSH2-RTC performs
best with fewer agents whereas BCP scales better to more agents. BCP
is superior on the maze with corridor width 10. In total, BCP, Lazy CBS
and CBSH2-RTC respectively solve 181, 142 and 161 of the 600 maze
instances.

All three algorithms clearly scale to high numbers of agents con-
sidered out-of-reach just a few years ago but none of the algorithms
closes the MAPF problem. Overall, BCP retains its lead on Lazy CBS
and CBSH2-RTC by solving 2402 of the 4430 instances, compared to
2039 by Lazy CBS and 1939 by CBSH2-RTC. The gap between the three
approaches is closing, particularly because new developments in one
technique are later ported to other algorithms.
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Table 1
Number of solved instances and average run time after removing each improvement.

Configuration Instances solved Average time

Full algorithm 1188 149
Wait-edge conflicts 1187 (−1) 149 (+0)
Two-agent wait-edge conflicts 1185 (−3) 149 (+1)
Corridor conflicts 1184 (−4) 150 (+1)
Wait-corridor conflicts 1183 (−5) 150 (+1)
Wait-delay conflicts 1188 (−0) 149 (+1)
Exit-entry conflicts 1126 (−62) 156 (+7)
Two-edge conflicts 1171 (−17) 151 (+2)
Wait-two-edge conflicts 1178 (−10) 151 (+2)
Rectangle conflicts 896 (−292) 184 (+36)
Step-aside conflicts 1187 (−1) 149 (+0)
Goal conflicts 1000 (−188) 176 (+27)
A* caching 1165 (−23) 151 (+2)
Path length branching 889 (−299) 184 (+35)

A few general conclusions can be drawn from these experiments.
CP maintains consistent high-performance across all maps. It is com-
etitive with the other two world-leading algorithms Lazy CBS and
BSH2-RTC in all maps and besting them in most cases. The perfor-
ance of Lazy CBS highly depends on the structure of the map. On

he sparse maps (Berlin_1_256, Paris_1_256 and empty-32-
32), Lazy CBS performs exceedingly well, matching BCP despite being
much simpler. In contrast, on the maps with high contention due to
small spaces or long corridors, Lazy CBS sometimes performs poorly
(10x30-w5 and brc202d) or even fails catastrophically (orz900d);
although it is competitive on several of these maps (w_woundedcoast
aze-128-128-1 and maze-128-128-2). CBSH2-RTC has im-
roved significantly since the previous comparison when it greatly
agged behind BCP for all maps except maze-128-128-1 and maze-
28-128-2 where it matched BCP. CBSH2-RTC is now unchallenged
n maze-128-128-1.

.2. Comparison of the improvements

The second experiment compares the impact of each improvement
escribed in Section 4. Each of the thirteen improvements is removed
rom the full BCP algorithm in turn. Due to the large number of
onfigurations, this experiment is run on half of the 4430 instances
2215 instances in total).

Table 1 shows the number of instances solved and the mean run
ime for each configuration. The greatest degradations come from
mitting the path length branching, rectangle conflict constraints and
oal conflict constraints. These three additions directly attack the MAPF
roblem structure by bringing new reasoning, whereas the other con-
lict constraints simply tighten the master problem by merging differ-
nt combinations of the vertex conflict constraints and edge conflict
onstraints.

The remaining constraints make a much smaller contribution. This
inding departs from preliminary experiments. During their develop-
ent, all thirteen improvements were evaluated on a small set of

nstances and were shown to increase the number of instances being
olved. Ironically, recent improvements to the core BCP code (i.e., more
fficient data structures, better tuning of parameters, improved primal
euristics, etc.) have substantially diminished the impact of many valid
nequalities, which were crucial to performance in earlier work (Lam
nd Le Bodic, 2020). (Five other valid inequalities were also developed
ut had no impact or negative impact on performance. These valid
nequalities are not reported in this paper but remain accessible in the
ublic code.)

. Conclusion and future work

This paper presents BCP, a state-of-the-art exact algorithm for MAPF
12

hat uses the branch-and-cut-and-price framework from mathematical i
optimization. BCP decomposes the MAPF problem into a master prob-
lem that selects one low-cost path for every agent, a pricing problem
that generates lower-cost paths for the agents and separation problems
that each resolves a different class of conflicts. A minimally-working
baseline algorithm is augmented with eleven classes of valid inequali-
ties that dramatically tighten the master problem, a branching rule that
directly targets the cost function and a caching technique that reduces
the number of calls to the A* shortest path algorithm, where BCP
spends the majority of its run time. A further five classes of constraints
are also developed but they do not improve performance in preliminary
experiments and hence are not reported here.

Empirical results show that BCP displays exceptional performance,
sometimes substantially outperforming the two other state-of-the-art
algorithms CBSH2-RTC and Lazy CBS. BCP, Lazy CBS and CBSH2-RTC
respectively solve 2402, 2039 and 1939 of 4430 instances across 16
maps. These results demonstrate that close collaboration between the
mathematical optimization and artificial intelligence communities can
yield significant advances.

The experiments also reveal that BCP and CBSH2-RTC exhibit con-
sistent high-performance across all maps, whereas the performance of
Lazy CBS is highly dependent on the map structure. Lazy CBS dominates
on maps with wide open spaces but fails on maps with long, narrow
corridors or choke points. The reasons for these behaviors remain an
open question. One hypothesis is that the open nature of the empty-
32-32 and random-32-32-10 maps leads to many more repeated
failures, which Lazy CBS handles well. Consider two agents at the top of
the map in conflict and two agents at the bottom of the map in conflict.
In BCP and CBSH2-RTC, every time the conflict between the top pair
of agents is resolved at an adjacent location, the conflict for the bottom
pair must also be resolved. In Lazy CBS, the conflict for the bottom pair
is resolved once, recorded and never seen again, dramatically reducing
the amount of computation.

BCP is an anytime algorithm. It can find a sequence of improving
solutions before finally proving optimality. However, it is not yet devel-
oped for this situation. Future work can consider tuning its numerous
parameters to improve its anytime behavior to the detriment of proving
optimality.

The foundation of Lazy CBS is its conflict analysis technique from
constraint programming. Recent collaborations by the inventors of BCP
and Lazy CBS unified the conflict analysis procedure from constraint
programming with the strong lower bounds from integer program-
ming (Lam and Van Hentenryck, 2017; Davies et al., 2017; Lam et al.,
2020). Future work should attempt to merge BCP and Lazy CBS.
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