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Abstract

The Flatland Challenge, which was first held in 2019 and re-
ported in NeurIPS 2020, is designed to answer the question:
How to efficiently manage dense traffic on complex rail net-
works? Considering the significance of punctuality in real-
world railway network operation and the fact that fast passen-
ger trains share the network with slow freight trains, Flatland
version 3 introduces trains with different speeds and schedul-
ing time windows. This paper introduces the Flatland 3 prob-
lem definitions and extends an award-winning MAPF-based
software, which won the NeurIPS 2020 competition, to effi-
ciently solve Flatland 3 problems. The resulting system won
the Flatland 3 competition. We designed a new priority order-
ing for initial planning, a new neighbourhood selection strat-
egy for efficient solution quality improvement with Multi-
Agent Path Finding via Large Neighborhood Search(MAPF-
LNS), and use MAPF-LNS for partially replanning the trains
influenced by malfunction.

Introduction
The Flatland 3 Challenge is the third edition of this popu-
lar railway network operation competition. The competition
is organized by AICrowd, SBB (Swiss federal railways),
SNCF (French national railway company), and Deutsche
Bahn (German national railway company), which aims to
answer the question:“How to efficiently manage dense traf-
fic on complex rail networks?”.

The challenge was first held in 2019, where most par-
ticipants used planning or operation research methods to
solve the problem. To encourage participants to use rein-
forcement learning approaches, the NeurIPS 2020 Flatland
Challenge (Laurent et al. 2021) added a separate reinforce-
ment learning track (which ranks only reinforcement learn-
ing approaches). The competition format changed to tackle
an unbounded number of instances of increasing difficulty in
8 hours, in anticipation that the computation speed and large
problem size would be bottlenecks for non-reinforcement
learning approaches. However, the 2020 competition shows
no doubt that planning-based approaches again dominated
reinforcement learning approaches.

The challenge simulates railway network operations on
an idealized railway network, a grid-based map showing rail
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tracks and train stations with a set of trains with start and tar-
get stations. Our task is to navigate trains to their target sta-
tions while complying with the rules of the rail transaction
and avoiding collisions. The Flatland 3 Challenge introduces
more elements from real-world rail operations. One change
reflects the fact that timing and punctuality are crucial for
real-world railways. The challenge schedules a time window
for each train: the earliest departure time and an expected
arrival time. The other change reflects how fast passenger
trains and slow freight trains share the same railway network
in the real world. The challenge considers trains with differ-
ent speed profiles, modelled by the minimal number of time
steps needed to travel through a rail segment.

A significant hidden challenge of the competition is to
overcome the slow execution speed of the competition envi-
ronment. In the NeurIPS 2020 Flatland challenge, the win-
ning software only used 30% of the 8 hours for planning
agents, the rest was spent in executing the simulation envi-
ronment. For Flatland 3, the total planning time is only 5%
of the total time, meaning over 2 hours of evaluation time,
we only have about 7 minutes for planning. In the challenge,
reducing the makespan (the time the last train arrived) also
helps reduce the environment execution time, since it exe-
cutes fewer steps, but in Flatland 3, because of the earliest
departure times, the overall makespan is hard to reduce by
planning (it is strongly bounded by the latest leaving trains).
These considerations mean that a careful balance is required
in how much time should be spent improving the plans.
Any time-consuming optimisation leads to a reduction in
the number of solved problems, which can cause significant
score loss but limited per-instance score improvement.

The challenge is highly related to the academic prob-
lem of Multi-Agent Path Finding(MAPF). MAPF defines a
graph and a group of agents, where each agent has a start
and target vertex, and we need to plan collision-free paths
for all agents while minimizing an objective, e.g. sum of
individual costs. The problem is essential for a wide range
of applications, including computer games (Sigurdson et al.
2018; Li et al. 2020a), automated warehousing (Ma et al.
2017; Chen et al. 2021a; Li et al. 2020b), UAV traffic man-
agement (Ho et al. 2019) and drone swarms (Hönig et al.
2018). Variants of the MAPF problem, such as MAPF with
motion planning (Cohen et al. 2019), MAPF with deadlines
(Ma et al. 2018) and MAPF with delay probabilities(Cáp,
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Figure 1: Example of flatland railway network. (Laurent
et al. 2021)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: Flatland rail types: (a) straight, (b) curve, (c) sim-
ple switch, (d) diamond crossing, (e) single slip switch, (f)
double slip switch, (g) tri-symmetrical switch, and (h) sym-
metrical switch. (Li et al. 2021b)

Gregoire, and Frazzoli 2016; Chen et al. 2021b; Ma, Kumar,
and Koenig 2017; Li et al. 2019; Wagner and Choset 2017;
Atzmon et al. 2020) are also widely studied and closely re-
lated to the Flatland environment.

In this paper, we introduce the definition of the Flatland 3
problem, illustrate how Flatland 3 differs from previous edi-
tions, and describe a MAPF-based software that efficiently
plans and replans punctual paths for trains with different
speeds, winning the Flatland 3 competition.

Flatland 3 Environment
Problem Definition
Flatland 3 aims to solve the rail planning and replanning
problem with soft deadlines based on a railway network rep-
resented by a w × h grid map with n cities, where each
traversable cell is associated with a rail type shown in Figure
2. The rail type determines how trains can traverse through
the cell. Each city is a small area on the map and has an even
number (minimum 2) of parallel rails, where one rail in the
city contains a train arrival station, and the other rail contains
a departure station. Figure 1 shows an example with 2 cities,
where the red building indicates an arrival station and the de-
parture station is the adjacent cell on the other rail. Time is
discretized into timesteps from 0 to Tmax = ⌊8(w+h+m

n )⌋.
There is a set of m trains {a1, a2, ..., am} in a problem.
Each agent ai has a start cell si (= a train station), an ini-
tial orientation di, a target cell gi (= another train station),
a max speed counter Cmax

i ∈ [1...4] (indicate the minimum
timesteps needed to traverse through a cell), the earliest de-
parture timestep EDTi, and an expected arrival timestep
EATi (a soft deadline). Note that the speed counter Cmax

is an inverse of speed: Cmax = 1 trains can move in ev-
ery time step, Cmax = 4 trains can move at most once in 4
timesteps.

Our task is to navigate as many trains as possible to their
target cells and minimize total arrival delays for those who

did not catch EAT. To be more specific, we want to max-
imize the normalized reward (or reward for short) defined

as: 1 −
∑

1≤i≤m
Di

mTmax
∈ [0, 1], where Di = min(EATi −

ACTi, 0) is how many timesteps ai is delayed arriving at
its goal gi, ACTi is the actual arrival time of agent ai. If
ai does not arrive gi before Tmax, ACTi is estimated as
Tmax + distance(vi, gi) (vi is the location of ai at Tmax

or si if ai does not enter the environment at Tmax). We de-
fine success rate as the percentage of trains that reach their
target cells by timestep Tmax and earliest arrival time T 0

i
of the train ai as the earliest timestep when it can reach its
target cell when ignoring collisions with other agents.

Each agent is parked off map at timestep 0 and leaves
the map immediately when they arrive at its goal cell. An
agent ai appears in its start cell (enter the map) with its ini-
tial orientation and a speed counter Ci = 0 when receiving a
move forward command in or after timestep EDTi. At each
timestep, an agent only occupies one cell, and we navigate
all agents giving each of them a command. When ai is on
the map, a move forward/left/right command will:

• increase Ci by 1 if Ci < Cmax
i ,

• set Ci = 0 and move ai to an adjacent cell following
the transition rule of a rail type if Ci == Cmax

i , and the
move action does not collide with any other trains and ai
is not suffering from a malfunction,

• keep Ci unchanged and stay in the current cell otherwise.

Two actions collide iff two agents arrive at the same cell or
two agents swap adjacent cell locations at the same timestep.
A stop command leaves the agent’s location and C un-
changed. Malfunctions simulate delays by stopping a train
at a random timestep for a random duration. The random
timestep is generated by a Poisson process with a rate λ. The
random duration is uniformly selected from the positive in-
teger range and the delay duration becomes known when the
malfunction occurs. The value of λ and the range of random
delay duration is known to the planning code.

The competition provides a software library written in
Python to simulate the environment. For each instance, the
simulation ends when all agents reach their target cells or
reach Tmax. Our solution is written as a C++ dynamic li-
brary and called by the Python simulator. As discussed in
the introduction, this environment consumes the majority of
the execution time.

Competition Configuration
The challenge evaluates participants’ codes in 150 instances
with a time limit of 2 hours. These instances are categorized
into 15 difficulty levels and each level contains 10 distinct
instances. The easiest level has 30 × 30 grid maps with 7
agents and 2 cities. The hardest level has 158 × 158 grid
maps with 425 agents and 41 cities.

Flatland Challenge and MAPF
(Li et al. 2021b) showed the Flatland Challenge has impor-
tant differences from standard MAPF, but is closely related



to MAPF variants. In the standard MAPF definition, we nav-
igate a team of agents from their start vertices to goal ver-
tices on an undirected graph with minimum flow time and
without collisions. At each timestep, agents can move to an
adjacent vertex or wait at the current vertex. Unlike standard
MAPF, the Flatland environment restricts train movement to
rails, trains are parked off the map before entering the map,
and after reaching their target, the maximum time Tmax acts
as a hard deadline for all trains and trains break down ran-
domly while moving.

Flatland 3 further restricts trains’ movement based on a
speed profile, adds soft deadlines and departure times for
each train, and uses the objective of minimizing arrival de-
lays.

NeurIPS 2020 Flatland Challenge
Compared to the NeurIPS 2020 Flatland Challenge, the or-
ganizer of the competition introduced more elements from
real-world railway operations. In the NeurIPS 2020 Flatland
Challenge, all trains have the same speed Cmax = 1, have
no earliest departure timestep or expected arrival timestep,
and the optimisation objective is similar to the sum of in-
dividual costs, e.g., the total number of steps taken by all
trains to reach their targets. In addition, the 2020 challenge
evaluates solutions over an infinite number of instances with
increasing difficulty with an 8 hour runtime limit.

Just as in Flatland 3, the 2020 challenge has an overall
track, which takes all solutions into account, and a rein-
forcement learning track, which only considers reinforce-
ment learning-based solutions. The winning solution of the
overall track, a MAPF-based approach, solved 362 instances
with a score of 297.507 and the largest instance contains
3,256 trains. The top solution from the reinforcement learn-
ing track spent 8 hours solving 336 instances with a score of
214.150, which is reached by the top MAPF-based solution
after only 15 minutes.

MAPF-based Flatland 2020 solution
(Li et al. 2021b) developed a MAPF-based software, which
incorporates many state-of-the-art MAPF techniques, for
solving train planning and replanning problems on large-
scale networks under uncertainty and won the NeurIPS 2020
Flatland Challenge. Our solution for Flatland 3 is based on
this work.

Their basic solution uses Prioritized Planning (PP) (Sil-
ver 2005) to generate the initial solution and uses Mini-
mal Communication Policy (MCP) (Ma, Kumar, and Koenig
2017) to handle malfunctions during execution. MAPF via
Large Neighborhood Search (MAPF-LNS) (Li et al. 2021a),
Partial Replanning (PR) and Lazy Planning (LP) (Li et al.
2021b) further improved their solution.

PP first sorts agents in a priority order, from high pri-
ority to low priority. Then uses Safe Interval Path Find-
ing(SIPP)(Phillips and Likhachev 2011) to plan the shortest
paths while avoiding collisions with already planned paths,
for each agent in the priority order. The Flatland Environ-
ment problems are well-formed(Ma et al. 2019a), hence PP
is guaranteed to find a solution if such a solution exists. Al-

though the PP computes solutions rapidly, its solution qual-
ity is far from optimal.

MAPF-LNS further improves the solution of PP by re-
peating a Large Neighborhood Search process to improve
the quality. It takes the solution of PP as input and repeatedly
selects, destroys, and replans the paths of a subset of agents
until an iteration limit is reached. Li et al runs 4 PP with dif-
ferent priority orders followed by 4 MAPF-LNS processes in
parallel to select the best solution. To balance the trade-off
between solution quality and runtime they collected training
data offline and use Simulated Annealing to determine the
LNS iteration limits for instances of different sizes.

MCP stops some trains to maintain the order in which
each train visits shared cells to avoid potential deadlocks
caused by malfunctions. But it sometimes stops trains un-
necessarily. They designed a PR mechanism, which selects
and replans the paths of agents that are influenced by mal-
functioning agents, to overcome this issue.

When there are thousands of agents to schedule, the run-
time of PP with SIPP grows rapidly as it has to plan paths
that avoid collisions with an increasing number of existing
paths. The LP scheme tackles this issue by only planning
paths for some of the agents during the initial planning phase
and planning the rest during the execution. It prevents push-
ing too many agents into the environment, thus avoiding se-
vere traffic congestion, taking into account malfunctions that
have already happened in later planning, ignoring the paths
of finished agents and significantly reducing the planning
runtime.

Rail Planning and Replanning with Soft
Deadlines

In this section, we introduce a modified and improved ver-
sion of (Li et al. 2021b)’s solution which solves Flatland
3 problems efficiently. We evaluated our solution over 150
locally generated instances, in which we simulate the chal-
lenge benchmark based on public challenge configuration,
on a Nectar Cloud Server with AMD Opteron 63xx CPU
and 32 GB RAM. The source codes and evaluation instances
will be made public upon publication.

SIPP with Discrete Speed
One advantage of SIPP is that it is capable of planning paths
with motion constraints (Ma et al. 2019b). A search node
n = ⟨v, I, t⟩ in SIPP includes a current vertex v, an obstacle-
free time interval I = [l, u) of v, and an earliest possible
arrival time t. SIPP expands n by generating successor nodes
for all reachable vertexes’ reachable time intervals from n,
where n′ is a successor of n, I ′ is the interval of n′, I ′.l <=
I.u, I ′.u > n.t+ 1 and n′.t = max(n.t+ 1, I ′.l).

The nature of discrete speed in Flatland 3 is a kind of
motion constraint that, an agent ai must stay at a vertex for
at least Cmax

i timestep before it traverses to the next vertex.
To satisfy this constraint, we generate a successor node n′ iff
I ′.u > n.t + Cmax

i . Then the earliest possible arrival time
of n′t is max(n.t+ Cmax

i , I ′.l).
Our basic Flatland 3 solution uses SIPP with discrete

speed for PP, modifies the SIPP to only allow agents en-



tering the map at or after EDT of each agent, disables LP
as there are at most 425 agents in any competition instance,
disables PR to solve more problems within the time limit,
and optimized the coding quality. The LNS is modified to
accept a replanned solution iff the total arrival delay is im-
proved in each iteration, and the iteration limit is at most 50
for small and large instances and at most 500 for instances
in the middle, as we observed locally that the instances in
the middle perform worse than others without LNS. This so-
lution solves 135 problems in 2 hours and gives a score of
123.966. But this is not enough to win the competition. Due
to the increasing difficulty of evaluation instances and the
long environment execution time on large instances, solving
one more instance or improving the average score over all
solved instances becomes extremely difficult. Hence the im-
provements we discuss below, why they seem tiny are in fact
significant.

Slack Based Priority
In the 2020 solution, PP sorts agents by train index, earli-
est arrival time, or start cells. Using parallel computing, PP
computes with different priority orders at the same time and
selects the best solution. In the Flatland 3 challenge, the in-
troducing of the soft deadline and the new optimization ob-
jective make the soft deadline an important factor for priority
ordering.

A basic idea would be to prioritize agents with the earli-
est soft deadline, but this can be misleading. Assuming one
agent a1 has a late EAT1, but also a late EDT1. The short-
est path distance between the start and goal vertex might be
equal to EAT1−EDT1. Another agent a2, which must col-
lide with a1, has EAT2 < EAT1, but the EAT2−EDT2 is
far larger than the length of its shortest path. Clearly, giv-
ing a1 higher priority is a better choice, although it has
a later EAT1. Considering the scenario above, we define
slacki = EATi − EDTi − distance(si, gi) of agent ai
as a better metric for a priority order.

We define a new priority ordering based on slack tie-
breaking by prioritizing fast agents over slow agents. We
added this priority order in the parallel-PP approach of the
2020 solution and it solved 135 problems with a score of
124.227.

Delay-based neighbourhood selection
Neighbourhood selection, where the LNS select a subset
of agents for replanning, is the key for MAPF-LNS to im-
prove solutions efficiently. The 2020 solution designed three
neighbourhood selection strategies: (1) an agent-based strat-
egy, which selects a train that is heavily delayed and other
trains that cause the delay, (2) an intersection-based strat-
egy, which selects trains that visit the same intersection, (3)
a start-based strategy, which selects trains with the same
start cell. It uses adaptive LNS (Ropke and Pisinger 2006)
to keep track of each strategy’s relative improvement and
choose strategies randomly in proportion to their improve-
ment.

Here we propose a delay-based strategy that takes ac-
count of soft deadlines. We randomly select an agent from

all agents that can not arrive at its goal vertex before its ex-
pected arrival time and find other agents potentially blocking
its way. Then we randomly prioritize the selected agents, re-
plan their paths, and only accept their new path if this results
in lower total arrival delays.

If we replace the start-based strategy (which is not rel-
evant to Flatland 3 where trains have a scheduled depar-
ture time) in the adaptive LNS this improves the score to
124.352. If we disable adaptive LNS and use only delay-
based neighbourhood selection we get a score of 124.432.
We assume the relatively small iteration limit settings make
it harder for adaptive LNS to learn the right balance of strate-
gies.

Partial Replanning using LNS
PR fixes unnecessary waits caused by MCP when a new mal-
function happens, but it also has the following drawbacks:
(1) malfunction happens almost on every timestep on a large
instance, and running PR on every timestep slows down the
execution process, (2) too many trains need to be replanned
on large instances, and (3) it replans paths without the guid-
ance of the reward, in other words, if we can only replan a
small proportion of affected agents, it does not know who to
plan first.

To overcome these issues, we use MAPF-LNS for PR,
which focuses on agents causing arrival delays and opti-
mises total arrival delays during the execution. LNS PR
also overcomes the issue that malfunctions during execu-
tion make the optimisation of the initial plan less effective.
Different from PR in the 2020 solution that is triggered by
each new malfunction, we run LNS PR for a fixed number of
times r for each instance and each run has p LNS iterations.
In other words, we run LNS PR every Tmax

r timesteps, rather
than every timestep where a malfunction occurs. r and p are
two integer parameters we configure for submissions. In this
manner, we can balance the trade-off between solution qual-
ity and problem-solving speed better, and the influence from
all malfunctions happening before each run is addressed. By
setting r = 20 and p = 20 we increase the score to 125.175.
In comparison, if we trigger the standard PR with the same
frequency, we get a score of 124.911.

Conclusion
The Flatland 3 challenge provides a chance to tackle a (sim-
plified form of a) real-world problem. The challenge result
shows that MAPF-based approaches remain far ahead of Re-
inforcement Learning for this problem. Our software effi-
ciently plans and optimises paths for hundreds of agents in
seconds, while satisfying the speed and time window con-
straints, and delivers high-quality plan execution under un-
certainty. On the official leader board, our winning solution
reached a score of 135.47 and solved 145 instances. The sec-
ond team on the leaderboard reached a score of 132.470,
we reach the same score in 1 hour 50 minutes (illustrating
how a small difference in score actually represents a large
change). The best reinforcement learning approach ended
with a score of 27.868 which we reach in only 3 minutes.
Interestingly our score jumped to 140.99 solving all 150 in-
stances after the organizers re-ran our solution on a faster



computer after the competition finished. We then beat the
second team’s score (on the same computer) in 1 hour and
32 minutes.
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