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Abstract
The classic problem of constrained pathfinding is a well-studied, yet challenging,

network optimization problem with a broad range of applications in various areas

such as communication and transportation. The weight constrained shortest path

problem (WCSPP), the base form of constrained pathfinding with only one side

constraint, aims to plan a cost-optimum path with limited weight/resource usage.

Given the bi-criteria nature of the problem (i.e., dealing with the cost and weight

of paths), methods addressing the WCSPP have some common properties with

bi-objective search. This article leverages the recent state-of-the-art techniques in

both constrained pathfinding and bi-objective search and presents two new solution

approaches to the WCSPP on the basis of A* search, both capable of solving hard

WCSPP instances on very large graphs. We empirically evaluate the performance of

our algorithms on a set of large and realistic problem instances and show their advan-

tages over the state-of-the-art algorithms in both time and space metrics. This article

also investigates the importance of priority queues in constrained search with A*.

We show with extensive experiments on both realistic and randomized graphs how

bucket-based queues without tie-breaking can effectively improve the algorithmic

performance of exhaustive A*-based bi-criteria searches.

KEYWORDS

bi-objective shortest path, constrained pathfinding, heuristic search, weight con-

strained shortest path

1 INTRODUCTION

The weight constrained shortest path problem (WCSPP) is well known as a technically challenging variant of the classical

shortest path problem. The objective of the point-to-point WCSPP is to find a minimum-cost (shortest) path between two

points in a graph such that the total weight (or resource consumption) of the path is limited. Formally, given a directed graph

G = (S,E) with a finite set of states S and a set of edges E, each edge labeled with a pair of attributes (cost,weight), the task

is to find a path 𝜋 from start ∈ S to goal ∈ S such that cost(𝜋) is minimum among all paths between start and goal subject to

weight(𝜋) ≤ W where W is the given weight limit. The problem has been shown to be NP-complete [17].

The WCSPP, as a core network optimization problem or a subroutine in larger problems, can be seen in various real-world

applications in diverse areas such as telecommunication networks, transportation, planning and scheduling, robotics and game

development. A typical example of the WCSPP as a core problem is finding the least-cost connection between two nodes in

a network with relays such that the weight of any path between two consecutive relays does not exceed a given upper bound
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[20]. As a subroutine, examples can be solving the WCSPP as a sub-problem in the context of column generation (a solving

technique in linear programming) [35], or obtaining valid (constrained) paths needed for trip planning such as in vehicle routing

problems. A valid path in this context can be defined as the quickest path between two points such that its energy requirement

is less than the (limited) available energy/petrol [31] or an energy-efficient path that is at most a constant factor longer than the

shortest time/distance path for every transport request [1].

Looking at the performance of the state-of-the-art search techniques for constrained pathfinding over the last decade, we can

see fast algorithms that are able to optimally solve small-size instances in less than a second. However, given the significance

and difficulty of the problem, especially in large-size graphs, the WCSPP still remains a challenging problem that needs more

efficient solutions in terms of time and space (memory usage). The main motivations behind this research are therefore as

follows.

1. Hardware/resource requirement: we are mainly concerned by the space requirement of recent solutions to the WCSPP, as

this metric may drastically limit their application in large graphs. Although space usage is highly correlated with runtime

and (faster) methods are likely to consume less memory, there are still some procedures in the state of the art that are

space-demanding. As an example, the partial path matching procedure in the recent bidirectional approaches needs to

store partial paths of each direction to be able to build a complete start-goal path later during the search. In terms of

memory, this procedure is quite demanding, since the number of partial paths grows exponentially over the course of the

search.

2. Applicability of algorithms: Although recent algorithms have shown that the problem can be solved faster bidirectionally,

there are several problems were searching backwards is not possible or at least is not straightforward. As an example,

in planning feasible paths for electric vehicles, the forward search can propagate estimated battery levels based on the

current battery level at the origin location, but a backward search would require the final battery level at the destination

to be known without actually completing the search.

Among other variants of the shortest path problem, the bi-objective shortest path problem (BOSPP) is considered concep-

tually closest to the WCSPP in terms of the number of criteria involved. Compared to the WCSPP where we look for a single

optimal solution, methods to the BOSPP find a set of Pareto-optimal solution paths, a set in which every individual solution

offers a path that minimizes the bi-criteria problem in both cost and weight. The BOSPP is a difficult problem, technically more

difficult than the WCSPP. Therefore, if there exists a time and space-efficient solution to the BOSPP, it is worth investigating

whether it can be adapted for the WCSPP as it may help us to address our serious concerns about the applicability of recent

approaches.

Contributions: For our first contribution, we design two new solution approaches to the WCSPP, called WC-EBBA*par and

WC-A*, by extending the recent fast algorithms available for both WCSPP and BOSPP. We conduct an extensive analysis of our

A*-based methods through a set of challenging WCSPP instances, and compare their algorithmic performance with six recent

WCSPP approaches to understand the strengths and weaknesses of the algorithms in both time and space metrics. The results

show that the proposed approaches are very effective in reducing the search time and also the total memory requirement of the

constrained search in almost all levels of tightness, outperforming some recent solutions by orders of magnitude faster runtime.

As our second contribution, we empirically study variations in a fundamental component of bi-criteria search with A*:

priority queue. We briefly explain our motivations for this extension. The bi-criteria search with A* works based on enumeration,

that is, all promising paths are evaluated until there is no feasible solution path better than the discovered optimum path. In

such search schemes, it is highly expected that the search generates dominated paths, that is, paths for which we can find at

least one other path with better cost and weight. Recent studies have shown that the lazy dominance test in bi-objective A*

contributes to faster query times. Nonetheless, it inevitably increases the number of suspended paths in the queue, mainly

because the queue accepts dominated paths, making queue operations lengthier. To this end, we extend our experiments and

investigate the impacts of three types of priority queues on the performance of constrained search with A*, namely bucket,

hybrid and binary heap queues. We define our hybrid queue to be a two-level bucket-heap structure. Among these types, we are

interested in finding a type that appropriately addresses the inefficiencies incurred by the lazy dominance test in the exhaustive

search of A*. The results of our extensive experiments show that bucket-based queues (bucket queue and hybrid queue) perform

far better than the traditional binary heap queues in managing the significant number of paths produced in difficult WCSPP

instances.

For our third contribution, we investigate the impact of tie-breaking on the algorithmic performance of constrained search

with A*, that is, the total computational cost of handling cases where two paths in the priority queue have the same estimated

cost. For this purpose, we evaluate two variants of our priority queues (with and without tie-breaking) on realistic and also

randomized graphs, and show how recent A*-based algorithms can expedite their search by simply ordering unexplored paths

solely based on their primary cost, without a tie-breaking mechanism. Our detailed analysis reveals that tie-breaking has a very

limited ability to reduce the number of path expansions. Instead, it incurs significant computational overheads to break the ties
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AHMADI ET AL. 5

among paths in the queue. In other words, in difficult bi-criteria problems, the priority queue’s effort in breaking the ties between

paths is not paid off by the search, and we are better off simply ordering paths in the queue based on their primary costs.

The article is structured as follows. In the next section, we survey related work in the WCSPP literature and explain, at a

high level, the main features of our selected algorithms. We formally define the problem in Section 3. The main features of

our constrained A* searches are explained in this section. In Section 4, we introduce our unidirectional search scheme WC-A*,

followed by our parallel algorithm WC-EBBA*par presented in Section 5. Section 6 describes our practical considerations for

the empirical study in Section 7. Our bucket and hybrid priority queues are introduced in this section. Section 7 contains the

experimental results and also our detailed study on the impacts of tie-breaking and priority queues on the computation time.

Finally, Section 8 presents conclusions and directions for future work.

2 BACKGROUND AND SELECTED ALGORITHMS

This section reviews classic and recent methods proposed to address the WCSPP. In our literature review, we also provide cases

where BOSPP approaches have been extended to address the WCSPP. We conclude this section by nominating two promising

extensions from both domains, along with six recent algorithms in the literature for the WCSPP as our baseline for experiments.

The WCSPP and its extended version with more than one weight constraint, which is known as the resource constrained

shortest path problem (RCSPP), are well-studied topics in the mathematical optimization literature. Since the WCSPP is just a

special case of the RCSPP, all algorithms designed to solve the RCSPP are naturally capable of addressing the WCSPP. This

applicability can be seen in almost all works on the RCSPP in the literature, where solution approaches are also computationally

evaluated on benchmark instances of the WCSPP. Given the close relationship between the two problems, there exist various

types of solution approaches in the literature designed to tackle constrained pathfinding in different settings. Pugliese and

Guerriero [25] presented a summary of traditional exact solution approaches to the RCSPP (methods that solve the problem to

optimality). In their survey paper, strategies for the gap-closing step (the main search for the optimal solution) are discussed

in three categories: path ranking, dynamic programming and branch-and-bound (B&B) approach. In the first category (path

ranking), k-paths are obtained, usually by solving the k-shortest path problem, and then sorted (ranked) based on their cost in

ascending order. For the search phase, the shortest paths are successively evaluated until a feasible path (with a valid resource

consumption) is obtained [28]. As the computational effort in the first phase depends on the value of k, and since the value of k
exponentially grows with respect to the size of the network, selecting an efficient path ranking method is crucial in this category

of solutions. Solution approaches in the second category generally establish a dynamic programming framework to extend partial

paths from origin to destination, normally via a labeling method. Labels in this context can be defined as tuples that contain

some essential information about partial paths such as cost, resource consumption and parent pointers. The search in labeling

methods can be improved by using pruning rules, or sometimes by integrating other methods to reduce the search space, normally

after a preprocessing phase [13]. The solution in this case is a feasible least-cost label (with a valid resource consumption) at

the destination. The third category of algorithms (B&B) tries to find feasible solutions by applying an enumeration procedure

(e.g., via a depth-first search) along branches of the search tree. This step usually involves adding a node to the end of the

partial path while using lower-bounding information to prune infeasible paths and remove nodes from the end of the partial path

(backtracking). It is evident that the performance of B&B approaches greatly depends on the quality of the bounds and also the

pruning strategy [23].

Ferone et al. [14] presented a short survey on the recent state-of-the-art exact algorithms designed for constrained pathfind-

ing. According to their report, we can still see effective methods from each category of solution approaches. The B&B-like

solution method presented by Lozano and Medaglia [21] conducts a systematic search via the depth-first search scheme for the

RCSPP. Their so-called Pulse algorithm was equipped with infeasible and dominance pruning strategies and was computation-

ally compared with the path ranking method of Santos et al. [28] on their benchmark instances for the WCSPP. Lozano and

Medaglia concluded that, regardless of the tightness of the constraint, the Pulse algorithm performs roughly 40 times faster than

the path ranking method of Santos et al. [28]. Horváth and Kis [19] extended the integer programming techniques presented

by Garcia [15] for the RCSPP and designed a B&B solution with improved cutting and heuristic methods. Their computational

results on the WCSPP instances of Santos et al. [28] show that their proposed branch-and-cut procedure delivers a comparable

performance to the Pulse algorithm, both showing larger computational times with increasing input size. However, Sedeño-Noda

and Alonso-Rodríguez [29] later developed an enhanced path ranking approach called CSP, which was able to exploit pruning

strategies of Lozano and Medaglia [21]. They computationally tested their CSP algorithm and compared its performance against

Pulse on a new set of realistic large-size instances for the WCSPP. Sedeño-Noda and Alonso-Rodríguez reported that although

Pulse might perform better than their CSP algorithm mainly on small instances, it generally performs poorly on difficult large

instances, leaving 28% of the instances unsolved even after a two-day timeout. Their results also show that the enhanced path

ranking algorithm CSP runs generally faster across a range of constraint tightness and solves more instances than Pulse, yet still
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6 AHMADI ET AL.

leaving 4% of the instances unsolved. Later in [7], Bolívar et al. presented several acceleration strategies for Pulse to solve the

WCSPP with replenishment, mainly by introducing a queuing strategy that limits the depth of the Pulse search, and also a path

completion strategy that allows the search to possibly update the primal upper bound early. However, Bolívar et al. reported that

the accelerated Pulse method is just about 1%–5% faster than the standard Pulse algorithm on the WCSPP instances.

Among recent solutions, the dynamic programming approach of Thomas et al. [32] solves the RCSPP with the help of heuris-

tic search. Inspired by the idea of a half-way point utilized in the bidirectional dynamic programming approach of Righini and

Salani [27], Thomas et al. developed a bidirectional A* search informed with forward and backward lower bounding informa-

tion required for both pruning and the A*’s best-first search. In their RC-BDA* algorithm, the resource budget is divided equally

and then allocated to the forward and backward searches. In other words, the algorithm stops expanding partial paths with a

resource consumption larger than half of the total resource budget, allowing both searches to meet at 50% resource half-way

points. A complete path in this method can be obtained by joining forward and backward partial paths. Thomas et al. evaluated

RC-BDA* on some instances of Sedeño-Noda and Alonso-Rodríguez [29] for the WCSPP. Their empirical results illustrate the

effectiveness of their bidirectional search on large instances, being able to solve 99% of the total instances within five hours.

However, it can be seen that RC-BDA* is dominated by both Pulse of Lozano and Medaglia [21] and CSP of Sedeño-Noda and

Alonso-Rodríguez [29] on many small-size instances. Thomas et al. also tested a unidirectional version of RC-BDA* by running

a single forward constrained A* search. Compared to the bidirectional search RC-BDA*, they reported weaker performance (on

all levels of tightness) in both runtime and memory requirement for the unidirectional variant on the instances of [28]. Given

the success of the bidirectional search in large instances, Cabrera et al. [8] developed a parallel framework to execute Pulse bidi-

rectionally. To prevent the search from falling into unpromising deep branches, bidirectional Pulse (BiPulse) limits the depth of

the Pulse search and employs an adapted form of the queuing strategy proposed by Bolívar et al. [7] to store and later expand

halted partial paths in the breadth-first search manner. Similar to RC-BDA*, BiPulse handles collision between search frontiers

by joining forward and backward partial paths. This method in BiPulse is further extended by joining partial paths with their

complementary cost/resource shortest path to obtain and update the incumbent solution early. Cabrera et al. evaluated BiPulse

on a subset of large instances of Sedeño-Noda and Alonso-Rodríguez [29] for the WCSPP and compared BiPulse with the uni-

directional Pulse and RC-BDA* of Thomas et al. [32]. Their results show that BiPulse delivers better performance and solves

more instances than both Pulse and RC-BDA* on medium-size instances, while leaving 3% of the instances unsolved after 4 h

of runtime. Both RC-BDA* and BiPulse recently won the Glover-Klingman prize, awarded by networks [16].

The growing significance of the WCSPP can also be seen in its increasing prominence in the recent AI literature. Motivated

by the applications of the WCSPP, we modified and then improved RC-BDA* of Thomas et al. [32] for the WCSPP [5]. We

optimized various components of the RC-BDA* search and proposed an enhanced dynamic programming framework that was

able to solve, for the first time, 100% of the benchmark instances of Sedeño-Noda and Alonso-Rodríguez [29], each within just

9 min of runtime. We showed that our enhanced biased bidirectional A* algorithm for the WCSPP, which we call WC-EBBA*,

outperforms the state-of-the-art algorithms on almost all instances by several orders of magnitude. WC-EBBA* follows the

two-phase search of the conventional approaches. In the first (initialization) phase, the search establishes both lower and upper

bounds needed for the main search while reducing the search space by removing states that are out-of-bounds. Further, compared

to RC-BDA* where the bidirectional searches are expected to meet at the 50% half-way point, and also other approaches with

dynamic half-way point [33], the initialization phase of WC-EBBA* decides on the budgets of each search direction, making

the main bidirectional searches biased by enabling their search frontiers to meet at any fraction of the resource budget (not just

at the 50% half-way point). In the second phase, or the main search, WC-EBBA* employs several strategies to expedite the

searches in each direction. For the dominance checking procedure, WC-EBBA* borrows a fast strategy from the bi-objective

search context to detect and prune dominated partial path in a constant time. WC-EBBA* also takes advantage of node ordering

in A* to perform more efficient partial path matching, a procedure that plays an important role in both computation time and

space usage of the algorithm.

Given the success of the recent bidirectional search algorithms in solving difficult WCSPP instances, we still need to inves-

tigate algorithms that are more efficient in terms of space, and even sometimes algorithms that are simpler in terms of search

structure. For instance, some of the recent algorithms (BiPulse, RC-BDA*, and WC-EBBA*) employ a path-matching proce-

dure that handles frontier collision. To fulfil this task, the search needs to store all the explored partial paths in both directions.

However, this requirement can significantly increase the memory usage of the algorithms, since the number of partial paths can

grow exponentially over the course of the search. Quite recently in Ahmadi et al. [4], we leveraged our bi-objective bidirectional

A*-based search algorithm BOBA* [2, 3] and introduced WC-BA* as a bidirectional WCSPP method that does not need to han-

dle frontier collision. WC-BA* executes its forward and backward searches in parallel and on different attribute orderings (e.g.,

forward A* search working on cost and backward A* search on weight). As each individual search in WC-BA* is complete,

partial paths are no longer stored. Besides the early solution update (ESU) method we proposed in Ahmadi et al. [5], WC-BA*

has a unique method called heuristic tuning, which allows the search to improve its initial lower bounds during the search. We

evaluated WC-BA* on very large graphs and compared its performance against the recent algorithms in the literature, including
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AHMADI ET AL. 7

TABLE 1 An overview of the main features of the studied algorithms.

Feature/Alg. WC-A* WC-BA* WC-EBBA*par WC-EBBA* BiPulse Pulse RC-BDA* CSP

Bidirectional No Yes Yes Yes Yes No Yes No

Frontier collision - No Yes Yes Yes - Yes -

Parallel framework No Yes Yes No Yes No No No

Early solution update Yes Yes Yes Yes Yes No No No

Heuristic tuning No Yes No No No No No No

WC-EBBA*. The results of our experiments over 2000 new instances showed that WC-BA* outperforms WC-EBBA* by up

to 60% (35%) in terms of computation time (space) in various constrained problem instances. This observation motivated us

to further explore other efficient BOSPP methods for their constrained variant. We briefly describe the main features of our

studied algorithms as follows.

Selected algorithms: From the existing WCSPP solutions, we consider the recent WC-BA* and WC-EBBA* algorithms

and also the award-winning BiPulse algorithm as our baseline. For our extended empirical study, we also evaluate the other

award-winning algorithm RC-BDA*, the ranking method CSP and the B&B method Pulse.

Proposed algorithms: We target the recent fast A*-based BOSPP and WCSPP methods and develop two new algorithms

for the WCSPP, namely:

• WC-A*: The adapted version of the bi-objective A* search algorithm (BOA*) originally presented by Ulloa et al. [34]

and enhanced by us in Ahmadi et al. [2]. BOA* is a simple unidirectional search method, so its WCSPP variant will

help us to investigate a simple solution to problems that cannot be solved bidirectionally. Our adapted algorithm WC-A*

leverages improvements proposed for BOA*.

• WC-EBBA*par: WC-EB The extended version of our recent WC-EBBA* algorithm for the WCSPP [5], improved with

parallelism. In contrast to the standard WC-EBBA* algorithm where the search only explores one direction at a time, the

new variant provides the algorithm with the opportunity of executing its forward and backward searches concurrently.

This new feature allows us to accelerate the WC-EBBA*’s bidirectional search and solve more instances in a limited time.

The suffix par in WC-EBBA*par denotes that the algorithm is run on a parallel framework, ideally with two CPU cores.

Table 1 summarizes the main features of all eight algorithms studied in this article, including their proposed speed-up techniques.

3 NOTATION AND SEARCH STRATEGY

Consider a directed graph G = (S,E) with a finite set of states S and a set of edges E ⊆ S × S. Every edge e ∈ E has two

non-negative attributes that can be accessed via the cost function cost ∶ E → R+ × R+
. For the sake of simplicity, in our

algorithmic description, we replace the conventional (cost,weight) attribute representation with (cost
1
, cost

2
). Further, in our

notation, every boldface function returns a tuple, so for the edge cost function, we have cost = (cost
1
, cost

2
). Expanding a

typical state u generates a set of successor states, denoted Succ(u). A path is a sequence of states ui ∈ S with i ∈ {1, … , n} and

(ui, ui+1 ∈ E) for every i ∈ {1, … , n−1}. The cost of path 𝜋 = {u1, u2, u3, … , un} is then the sum of corresponding attributes

on all the edges constituting the path, namely cost(𝜋) =
∑n−1

i=1
cost(ui, ui+1). The WCSPP aims to find a cost-optimal start-goal

solution path such that the secondary cost of the optimum path is within the upper bound W (conventionally weight limit). We

formally define cost-optimal solution paths below.

Definition. 𝜋

∗
is a cost-optimal start-goal solution path for the WCSPP if it has the lexicographically smallest

(cost
1
, cost

2
) among all paths from start ∈ S to goal ∈ S such that cost

2
(𝜋∗) ≤ W.

We abstract from the two possible attribute orderings (1, 2) and (2, 1) in our notation by using a pair (p, s) (for primary and

secondary) with p, s ∈ {1, 2} and p ≠ s. Given an attribute ordering (p, s), we now define lexicographical order on (costp, costs),
followed by the definition of search directions.

Definition. Path 𝜋 is lexicographically smaller than path 𝜋

′
in the (costp, costs) order if costp(𝜋) < costp(𝜋′), or

costp(𝜋) = costp(𝜋′) and costs(𝜋) < costs(𝜋′). Path 𝜋 is equal to path 𝜋

′
if costp(𝜋) = costp(𝜋′) and costs(𝜋) =

costs(𝜋′).

Definition. The search is called forward if it explores the graph from the start state to the goal state. Otherwise,

searching from goal towards start is called backward.
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8 AHMADI ET AL.

In our notation, we generalize both possible search directions by searching in direction 𝑑 ∈ {forward, backward} from an

initial state to a target state. Therefore, the (initial, target) pair would be (start, goal) in the forward search and (goal, start)
in the backward search. In addition, we define 𝑑

′
to always be the opposite direction of 𝑑. To keep our notation consistent in

the bidirectional setting, we always use the reversed graph or Reversed(G) if we search backwards. Compared to the original

graph G, Reversed(G) has the same set of states but with all the directed edges reversed.

We follow the standard notation in the heuristic search literature and define our search objects to be nodes (equivalent to

partial paths). A node x is a tuple that contains the main information of the partial path to state s(x) ∈ S. The node x traditionally

stores a value pair g(x) which measures the cost of a concrete path from the initial state to state s(x). In addition, x is associated

with a value pair f(x) which is an estimate of the cost of a complete path from the initial state to the target state via s(x); and

also a reference parent(x) which indicates the parent node of x.

We consider all operations of the boldface costs to be done element-wise. For example, we define g(x) + g(y) as

(g1(x) + g1(y), g2(x) + g2(y)). We use (≺,≻) or (≼,≽) symbols in direct comparisons of boldface values, for example, g(x) ≼ g(y)
denotes g1(x) ≤ g1(y) and g2(x) ≤ g2(y). Analogously, if one (or both) of the relations cannot be satisfied, we use (⊀,⊁) or

(⋠,⋡) symbols. For instance, g(x) ⋠ g(y) denotes g1(x) > g1(y) or g2(x) > g2(y). Unless otherwise stated, if the search is bidi-

rectional, we assume that nodes are only compared within the same direction of the search. This means that we do not compare

a forward search node with a backward search node, even if they are associated with the same state. We now define dominance
over nodes generated in the same search direction.

Definition. For every pair of nodes (x, y) associated with the same state s(x) = s(y), we say node y is dominated

by x if we have g1(x) < g1(y) and g2(x) ≤ g2(y) or if we have g1(x) = g1(y) and g2(x) < g2(y). Node x weakly

dominates y if g(x) ≼ g(y).

With the search dominance criteria defined, we now describe state lower and upper bounds.

Definition. For every state u ∈ S, h𝑑(u) and ub𝑑(u) denote the lower and upper bounds on the cost of paths,

respectively, from state u to the target state in the search direction 𝑑 (goal in forward and start in backward search).

Note that h𝑑

and ub𝑑

can be established by conducting two simple unidirectional single-objective searches from the target

state in the reverse direction 𝑑

′
, one on cost

1
and the other one on cost

2
. We define the validity condition and terminal states as

follows.

Definition. A path/node/state x is valid if its estimated cost f(x) is within the search global upper bounds defined as

f = (f1, f2), that is, x is valid if f(x) ≼ f. Otherwise, x is invalid if f(x) ⋠ f, that is, if we have f1(x) > f1 or f2(x) > f2.

Definition. State u is a terminal state in direction 𝑑 if h𝑑(u) = ub𝑑(u), meaning that there exists a path from u to

the target state optimum for both costs.

As we will show later in the article, a valid node associated with such a terminal state yields a tentative solution [2, 4].

3.1 Constrained pathfinding with A*
The main search in A* is guided by the start-goal cost estimates or f-values. These f-values are traditionally established based

on a consistent and admissible heuristic function h ∶ S → R+ × R+
[18]. In other words, for every search node x, we have

f(x) = g(x) + h(s(x)) where h(s(x)) estimates lower bounds on the cost of paths from state s(x) to the target state.

Definition. The heuristic function hp is admissible iff hp(u) ≤ costp(𝜋) for every u ∈ S where 𝜋 is the optimal path

on costp from state u to the target state. It is also consistent if we have hp(u) ≤ costp(u, v) + hp(v) for every edge

(u, v) ∈ E [18].

We distinguish forward and backward heuristic functions by incorporating the search direction 𝑑, that is, h𝑑

. In A*, we

perform a systematic search by expanding nodes in best-first order. That is, the search is led by a partial path that shows the lowest

cost estimate. To this end, we expand one (lexicographically) least-cost node in each iteration and store all the descendant (new)

nodes in an Open list. More accurately, Open𝑑

is a priority queue for the A* search of direction 𝑑 that contains generated (but not

expanded) nodes. To commence the search, we initialize the Open𝑑

list with a node associated with the initial state and g = (0, 0).
For the purpose of further expansion, the Open𝑑

list reorders its nodes according to their f-values such that the least-cost node is

at the front of the list. In the constrained setting, since f represents a pair of costs, there are two possible lexicographic orderings

of the nodes in the Open𝑑

list. Therefore, depending on the search requirement, the Open𝑑

list can order nodes based on (f1, f2)
or (f2, f1) lexicographically. For example, if a search method needs unexplored nodes to be lexicographically ordered on (f1, f2),
the Open𝑑

list first orders nodes based on their f1-value, and then based on their f2-value if two (or more) of them have the same

f1-value. The latter operation (ordering based on the second element) is called tie-breaking. Nodes associated with the target
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AHMADI ET AL. 9

Procedure 1: Setup(𝑑)

1 Open𝑑 ← ∅
2 g𝑑

min(u)←∞ for each u ∈ S
3∗𝜒𝑑(u)← ∅ for each u ∈ S
4 if 𝑑 = forward then ui = start
5 else ui = goal
6 x ← new node with s(x) = ui
7 g(x) ← (0, 0)
8 f(x) ← (h𝑑

1
(ui), h𝑑

2
(ui))

9 parent(x) ← ∅
10 Add x to Open𝑑

∗
This list is used in WC-EBBA* search only.

state represent solution paths, thus A* does not need to expand such solution nodes. Finally, A* terminates if the cost-optimal

solution path is found, or if there is no node in the Open𝑑

list to expand.

Section SM. 1 in Supplementary Material (SM) revisits the principles of constrained search with A* and discusses in

detail the correctness of each component of the search, including (lazy) dominance rules, the termination criteria and opti-

mality of the solution. In the next parts, we present the search setup and the pruning strategies as part of our common

methods.

3.2 Search setup
The first common method in our A* searches is Setup(𝑑) in Procedure 1. This procedure shows the essential data structures we

initialize for our A*-based constrained search in direction 𝑑 ∈ {forward, backward}. Following the literature, the procedure

first initializes Open𝑑

as the priority queue of search. It then initializes for every u ∈ S the scalar g𝑑

min
(u), an important parameter

that will keep track of the secondary cost of the last node successfully expanded for state u during the search in direction 𝑑.

A* uses this parameter to prune some dominated nodes. Depending on the search direction, the procedure sets the initial state

ui. If the search direction is forward, ui is chosen to be start, otherwise, goal is chosen as the initial state. To commence the

search, the procedure generates a new node x with the initial state ui and inserts it into Open𝑑

. Node x, as the initial node, has

zero actual costs (i.e., g-values) and a null pointer as its parent node, but it can use the heuristic functions h𝑑

to establish its

cost estimate f (x), that is, f-values.

In addition, if we want to run a constrained search via WC-EBBA* or WC-EBBA*par, the procedure initializes 𝜒
𝑑(u) as an

empty list for every u ∈ S. As we described in Ahmadi et al. [5], this list will be populated with expanded nodes (partial paths)

of state u during the search in direction 𝑑. WC-EBBA*par (and similarly WC-EBBA*) will use this list to offer complementary

paths to nodes that are under exploration for state u in the opposite direction 𝑑

′
(as part of partial paths matching).

3.3 Path expansion with pruning
Expanding partial paths is a key component in A*. Procedure 2 shows the main steps involved in Expanding and Pruning (ExP)

a typical node x in the traditional (f1, f2) order and in direction 𝑑, as established in Ahmadi et al. [4]. The ExP(x, 𝑑) procedure

generates a set of new descendant nodes via s(x)’s successors, that is, Succ(s(x)), and then checks new nodes against the pruning

criteria. Each successor state is denoted by v. Lines 2–5 of Procedure 2 show the essential operations involved in the node

expansion. Given the partial path information carried by the current node x, each new node y is initialized with the successor

state v, actual costs g(y) and cost estimates f(y) of the extended path, capturing x as the node y’s parent. Procedure 2 also

applies three types of pruning strategies before inserting new nodes into Open𝑑

. We briefly explain their type and functionality

below.

• Line 6: Prune by dominance; ignore the new node y if it is dominated by the last non-dominated node expanded for s(y).
• Line 7: Prune by dominance; ignore node y if it is dominated by one of the preliminary shortest paths to s(y).
• Line 8: Prune by invalidity; ignore node y if it shows cost estimates beyond the search global upper bounds in f.

Note that the pruning strategy employed in Line 7 will only be used in bidirectional searches, where search in direction 𝑑

has access to states’ upper bound function ub𝑑

′
. Finally, the ExP(x, 𝑑) procedure inserts every new node y into Open𝑑

if y is not

pruned by dominance or validity tests.
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10 AHMADI ET AL.

Procedure 2: ExP(x, 𝑑) in (f1, f2) ord

1 for all v ∈ Succ(s(x)) do
2 y ← new node with s(y) = v
3 g(y)← g(x) + cost(s(x), v)
4 f(y) ← g(y) + h𝑑(v)
5 parent(y)← x
6 if g2(y) ≥ g𝑑

min(v) then continue
7∗ if g(y)  ub𝑑

′ (v) then continue
8 if f(y)  f then continue
9 Add y to Open𝑑

∗
This pruning is used in bidirectional searches only.

Procedure 3: ESU(x, 𝑑) in (f1, f2) ord

1 f ′
1
← g1(x) + ub𝑑

1
(s(x))

2 f ′
2
← g2(x) + ub𝑑

2
(s(x))

3 if f ′
2
≤ f2 then

4 if f1(x) < f1 or f ′
2
< f sol

2
then

5 f1 ← f1(x)
6 f sol

2
← f ′

2

7 Sol ← (x,∅)

8 else if f ′
1
< f1 then

9 f1 ← f ′
1

10 f sol
2
← ∞

3.4 Early solution update
The ESU strategy allows our algorithms to update the global upper bounds and possibly establish a feasible solution Sol before

reaching the target state. Here, we choose the ESU procedure we developed for bi-criteria search in Ahmadi et al. [2] and adapt

it to the WCSPP. The idea of this strategy is quite straightforward and is shown in Procedure 3 for the traditional objective

ordering (f1, f2) in the search direction 𝑑. We briefly describe the procedure as follows.

Consider node x as a partial path, the procedure ESU(x, 𝑑) tries to establish a complete start-goal path by joining x to its

two complementary shortest paths from s(x) to the target state. In our notation, we use (f1, f sol

2
) to keep track of the actual costs

of the best-known solution path during the search. The procedure tries two cases, as explained below.

1. It first joins node x with its complementary shortest path for the primary attribute, that is, the path with costs

(h𝑑

1
(s(x)), ub𝑑

2
(s(x))) in the (f1, f2) order. It then retrieves the actual costs of the joined path via f1(x) = g1(x)+h𝑑

1
(s(x)) and

f ′
2
= g2(x)+ub𝑑

2
(s(x)). If the resulting joined path is valid, the procedure treats x as a tentative solution node. In this case,

if the tentative solution is lexicographically smaller than the best-known solution, the procedure updates the global upper

bound f1 with f1(x). This is followed by storing f ′
2

in f sol

2
as the secondary cost of the new solution and also capturing x as

a new solution node via Sol.
2. If the joined path in the first part is found invalid, the procedure still has a chance to improve its primal upper bound using

the shortest path optimum for the second criterion, with costs (ub𝑑
1
(s(x)), h𝑑

2
(s(x))). In this case, the costs of the joined path

can be retrieved as f2(x) = g2(x) + h𝑑

2
(s(x)) and f ′

1
= g1(x) + ub𝑑

1
(s(x)). If the resulting joined path is valid, the procedure

updates the primary upper bound f1 with f ′
1

and then resets f sol

2
for the upcoming solution (with cost f ′

1
or better).

Note that the procedure does not need to explicitly check f1(x) and f2(x). This is mainly because our constrained A* searches

prune invalid nodes before attempting the ESU strategy. In addition, if x enters Procedure 3 with the target state, it will definitely

pass case 1 above and will be captured as a valid solution node. This is because we always have h𝑑(s(x)) = ub𝑑(s(x)) for such

nodes, which immediately yields f ′s = fs(x) and a valid path consequently. There is also one important difference between the

two cases: valid joined paths compute a potential solution only in case 1 (see Lemma SM. 1.10 for the formal proof).
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AHMADI ET AL. 11

Algorithm 4: WC-A* high-level

Input: A problem instance (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) with the weight limit W
Output: A node pair corresponding with the cost-optimal feasible solution Sol

1 h,ub, f, S′ ← Initialize WC-A* (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙,𝑊 ) ⊳ Algorithm 5
2 Sol ← (∅,∅), f sol

2
←∞

3 Sol ← Run a WC-A* search on (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) in the forward direction and (f1, f2) order with global upper

bounds f, heuristic functions (h,ub) and initial solution Sol with secondary cost f sol

2
. ⊳ Algorithm 6

4 return Sol

Solution path construction: If the search terminates with x as an optimal solution node with a non-target state, we just

need to join x with its shortest path on the primary cost (costp) for solution path construction. Therefore, solution path recovery

with the ESU strategy is a two-stage procedure: first, we follow back-pointers from Sol to the initial state and build the partial

path. Second, we recover the concrete path from the Sol’s state to the target state (via the pre-established initial shortest path

on costp) and then concatenate this complementary path to the partial path obtained in the first stage.

4 CONSTRAINED PATHFINDING WITH WC-A*

The BOSPP and WCSPP are two inextricably linked problems, with often shared procedures and terminologies. Compared to

the WCSPP where we look for a single optimal path, BOSPP aims to find a representative set of Pareto-optimal solution paths,

that is, a set in which every individual solution offers a path that minimizes the bi-criteria problem in both cost and weight.
More accurately, given (cost1, cost2) as our edge attributes, Pareto optimality is a situation where we cannot improve cost2 of

point-to-point paths without worsening their cost1 and vice versa. It is not difficult to show that any method that generates all

Pareto-optimal solutions to the BOSPP is also able to deliver an optimal solution to the WCSPP. From the WCSPP’s point of

view, if a cost-optimal solution path exists, it can always be found in a Pareto-optimal set of BOSPP. With this introduction, we

now explain how our new A*-based weight constrained search algorithm WC-A* can be derived from the recent Bi-objective

A* algorithm (BOA*) [34], a unidirectional search algorithm to find a set of cost-unique Pareto-optimal paths.

WC-A* is a simple solution approach specialized to solve the WCSPP and follows the search strategy of BOA* and its

improvements in Ahmadi et al. [2]. WC-A* works on the basis of A* and explores the graph in the forward direction (from start
to goal) in the traditional (f1, f2) order. Algorithm 4 shows the high-level design of WC-A* and its two essential phases. Similar

to other A*-based algorithms, WC-A* needs to establish its heuristic functions via an initialization phase. However, since the

main constrained search is unidirectional, WC-A* needs to compute lower and upper bound functions in only one direction.

Therefore, the initialization phase consists of two single-objective backward searches. When the preliminary heuristic searches

are complete, WC-A* initializes a node pair Sol with the secondary cost f sol

2
to keep track of the lexicographically smallest

solution node during the main search. In the next phase, WC-A* executes a forward constrained A* search in the (f1, f2) order.

When the second phase is also complete, the algorithm returns the node pair Sol, which corresponds to a cost-optimal solution.

Note that since WC-A* is a unidirectional search algorithm, there is no backward counterpart. Clearly, there is no feasible

solution if the returned node pair is empty. We illustrate operations in each phase of WC-A* as follows.

4.1 Initialization
WC-A* is a unidirectional search algorithm and only requires heuristics in one direction. Algorithm 5 shows the main steps

involved in WC-A*’s initialization phase. It starts with initializing the search global upper bounds, namely f -values. The sec-

ondary global upper bound f2 is set to be the weight limit W, while the primary upper bound f1 is initially unknown and will

be determined by one of the heuristic searches. The main constrained search will be run in the forward direction, so we obtain

the required heuristics hf
1

and hf
2

by running two cost-bounded backward A* searches. The first unidirectional A* search finds

lower bounds on cost
2

and stops before expanding a state with an estimated cost larger than the global upper bound f2. The

first search on cost
2

is also capable of initializing the global upper bound f1 using the upper bound obtained for the start state,

that is, ubf
1
(start). When the first cost-bounded A* terminates, all not-yet-expanded states in this preliminary search are guar-

anteed not to be part of any solution paths, reducing the graph size to obtain better-quality heuristics. This method is known as

resource-based network reduction [6]. To this end, our cost-bounded A* search on cost
1

will only consider the states expanded

in the first search and stops before expanding a state with a cost estimate larger than f1.
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12 AHMADI ET AL.

Algorithm 5: Initialization phase of WC-A*

Input: The problem instance (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) and the weight limit W
Output: WCSPP’s uni-directional heuristic functions h and ub, also global upper bounds f

1 Set global upper bounds: f1 ← ∞ and f2 ← W
2 hf

2
, ubf

1
← Run f2-bounded backward A* (from 𝑔𝑜𝑎𝑙 using an admissible heuristic) on cost2, use cost1 as a tie-breaker,

update f1 with ubf
1
(𝑠𝑡𝑎𝑟𝑡) when 𝑠𝑡𝑎𝑟𝑡 is going to get expandedand stop before expanding a state with f2>f2.

3 hf
1
, ubf

2
← Run f1-bounded backward A* (using an admissible heuristic) on cost1, use cost2 as a tie-breaker, ignore

unexplored states in the search of line 2, and stop before expanding a state with f1>f1.

4 S′ ← Non-dominated states explored in the last bounded A* search of line 3

5 return hf
,ubf , f, S′

Algorithm 6: Constrained search of WC-A*/BA*

Input: Problem (G, cost, start, goal), search direction 𝑑, objective ordering (fp, fs), global upper bounds f, search

heuristics (h,ub), and an initial solution Sol with the secondary cost f min

2

Output: A node pair corresponding with an optimal solution

1 Setup(𝑑) ⊳ Procedure 1
2 𝑑

′ ← opposite direction of 𝑑

3 while Open𝑑 ≠ ∅ do
4 Remove from Open𝑑

node x with the lexicographically smallest (fp, fs) values

5 if fp(x)>fp then break
6+ if fs(x)>fs then continue
7 if gs(x) ≥ g𝑑

min
(s(x)) then continue

8∗ if g𝑑

min
(s(x)) = ∞ then

9∗ h𝑑

′
p (s(x)) ← gp(x)

10∗ ub𝑑

′
s (s(x)) ← gs(x)

11 g𝑑

min
(s(x)) ← gs(x)

12 ESU(x, 𝑑) in (fp, fs) order ⊳ Procedure 3 or Algorithm 7
13 if h𝑑

p (s(x)) = ub𝑑

p (s(x)) then continue
14 ExP(x, 𝑑) in (fp, fs) order ⊳ Procedure 2 or 8

15 return 𝑆𝑜𝑙

+
This pruning method is used in the (f2, f1) order only.

∗
This heuristic is used in WC-BA* only.

The fact that WC-A* only needs two cost-bounded searches to establish its required heuristic functions can be seen as

WC-A*’s strength; easy problems will especially benefit from a speedy search setup. However, we can also see this simple

initialization phase as a weakness, mainly because WC-A* will have a limited capability to reduce the graph size. Compared

to the bidirectional algorithms where both attributes effectively reduce the graph size in two rounds of searches (forward and

backward), as in WC-EBBA* and WC-BA*, WC-A* benefits from this effective feature only in one round of bounded searches.

In addition, there may be cases where starting the bounded searches with cost
2

results in limited graph reduction, mainly due to

a lack of informed heuristics for cost
2
. We will investigate the impact of this possible search ordering on WC-A*’s performance

in our extended empirical study.

4.2 Constrained search
The constrained search in the second phase of WC-A* is relatively straightforward and involves in general two types of strategies:

expand and prune. Algorithm 6 shows a pseudocode of WC-A* in the generic search direction 𝑑 and in objective ordering (fp, fs).
In this notation, fp and fs denote primary and secondary cost of the search, respectively, generalizing the two possible objective

orderings (f1, f2) or (f2, f1). Although this article studies WC-A* in the standard setting of BOA*, we intentionally present WC-A*

in a generic form to emphasize its capability in solving the WCSPP from both directions and also in both objective orderings.

One such application of WC-A* is in the parallel searches of WC-BA* (see SM. 3 for more details). For now, let WC-A* be a
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AHMADI ET AL. 13

Procedure 7: ESU(x, 𝑑) in (f2, f1) order

1 f ′
1
← g1(x) + ub𝑑

1
(s(x))

2 f ′
2
← g2(x) + ub𝑑

2
(s(x))

3 if f ′
1
≤ f1 then

4 if f ′
1
<f1orf2(x)<f sol

2
then

5 f1 ← f ′
1

6 f sol

2
← f2(x)

7 Sol ← (∅, x)

8 else if f1(x)<f1andf ′
2
≤ f2 then

9 f1 ← f1(x)
10 f sol

2
←∞

Procedure 8: ExP(x, 𝑑) in (f2, f1) order

1 for all v ∈ Succ(s(x)) do
2 y ← new node with s(y) = v
3 g(y)← g(x) + cost(s(x), v)
4 f(y) ← g(y) + h𝑑(v)
5 parent(y)← x
6 if g1(y) ≥ g𝑑

min(v) then continue
7∗ if g(y)  ub𝑑

′ (v) then continue
8 if f(y)  f then continue
9 Add y to Open𝑑

∗
This pruning is used in bidirectional searches only.

forward constrained A* search in the (f1, f2) order, that is, we have 𝑑 = forward and (p, s)=(1,2). In addition, for the operations

given in Algorithm 6, we focus on those applicable to WC-A* (lines in black without
+

or * symbols).

Algorithm description: WC-A* in Algorithm 6 employs Setup(𝑑) (Procedure 1) to initialize data structures required by the

search in the forward direction. This initialization involves inserting a node with start state in the priority queue to commence the

constrained search. Let Openf
be a (non-empty) priority queue of the forward search in any arbitrary iteration of the algorithm.

WC-A* extracts a node x from the priority queue with the lexicographically smallest (f1, f2) among all nodes in Openf
. Note

that A* essentially needs x to be the least-costp node, however, lexicographical ordering of nodes in Openf
will help WC-A*

to prune more dominated nodes. If f1(x) is out-of-bounds (line 5), A* guarantees that all not-yet-expanded nodes would be

out-of-bounds and the search can terminate (see Lemma SM. 1.9). Otherwise, the algorithm considers x as a valid node and

checks it for dominance at line 7. If x is not weakly dominated by the last node expanded for s(x), WC-A* will then explore

x and update gf
min
(s(x)) with the secondary (actual) cost g2(x) at line 11 of Algorithm 6. In the next step (line 12), node x is

matched with the complementary shortest paths from s(x) to the goal state to possibly obtain a tentative solution or update the

primary upper bound f1 before reaching goal. This matching is done via our new ESU procedure (Procedure 3 in the (f1, f2)

order or Procedure 7 in the (f2, f1) order). At this point, the ESU strategy guarantees that x has been captured as a tentative

solution if the joined start-goal path via x is lexicographically smaller in the (cost
1
, cost

2
) order than the current solution in

Sol with costs (f1, f sol

2
). However, WC-A* can still skip expanding node x if it carries a terminal state via line 12, that is, if

h f
1
= ub f

1
. This is because nodes associated with a terminal state are tentative solution nodes (already captured by the ESU

strategy) and thus their expansion is not necessary (see Lemma SM. 1.11 for the formal proof). Finally, x will be expanded

via ExP(x, 𝑑) in the forward direction (Procedure 2 in the (f1, f2) order or Procedure 8 in the (f2, f1) order) if none of the above

cases holds.

Example: We explain the constrained search of WC-A* by solving a WCSPP for the graph depicted in Figure 1. On this

graph, we want to find the cost-optimal shortest path between states us and ug with the weight limit W = 6. Let us assume

the initialization phase has already been completed, and we have both lower and upper bounds from all states to ug (our tar-

get state) via two single objective backward searches. For the states in Figure 1, we have shown hf
and ubf

as part of the

states’ information, and have updated the primary global upper bound with ubf
1
(us) by setting f1 = 7 (via our initial solution).

Nonetheless, we can see that the graph size has not changed as all the lower bounds (h-values) are within the search global
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14 AHMADI ET AL.

FIGURE 1 Left: An example graph with cost on the edges, and with (state identifier, h, ub) inside the states. Right: Status of WC-A* in every iteration (It.):

nodes in the Open list at the beginning of each iteration, nodes pruned by the algorithm in each iteration, the (updated) value of the global upper bound f1 and

also the secondary cost of the best-known solution f sol

2
at the end of each iteration. The search is conducted in the forward direction and in the (f1, f2) order.

The symbol ↑ beside nodes denotes the expanded min-cost node in the iteration. The second table shows the status of the parent arrays of the states when the

search terminates (see Section 6 for details).

upper bounds. Figure 1 also shows a summary of changes in each iteration of WC-A*. In particular: the status of the Open
list at the beginning of each iteration, nodes pruned in the iteration and also the latest value of solution costs (f1, f sol

2
) at the

end of each iteration. We explain in three iterations below how WC-A* finds a cost-optimal solution path with just one node

expansion.

• Iteration 1: At the beginning of this iteration, the search sees only one node in Open associated with the start state

us. We extract this node as x ← [(3, 3), (0, 0), us] and interpret the node’s information as [(f1, f2), (g1, g2), state]. The

algorithm then checks x against the termination criterion and also the dominance test. x is a valid and non-dominated

node, so WC-A* updates g𝑑

min
(us) ← 0 and proceeds with the ESU strategy. In this procedure, we can see that the shortest

path from us to ug on cost
1

is invalid. In addition, the shortest path on cost
2

does not offer a valid path better than the

initial solution. So the procedure is unable to improve the upper bound in this iteration. s(x) is not a terminal state either,

so WC-A* expands x and generates new nodes when it discovers adjacent states u1, u2, and u3. Before inserting new

nodes into the priority queue, the pruning criteria indicate that the new node associated with u1 is invalid and should be

pruned, essentially because its secondary cost estimate is out-of-bounds (f2 > f2 or 7 > 6). However, the two other nodes

generated for states u2 and u3 will be added to the Open list.

• Iteration 2: There are two nodes in the priority queue. WC-A* extracts the node associated with u
2

as it is lexicograph-

ically smaller than the other node in the queue (in the (f1, f2) order). Let x ← [(5, 5), (3, 4), u2] be the extracted node.

This node does not meet the termination criterion and is not a dominated node, mainly because this is the first time

WC-A* visits state u2, so it updates g𝑑

min
(u2) ← 4. The algorithm then checks x against the ESU strategy. In the ESU(x, 𝑑)

procedure, we realize that joining x with its complementary shortest path on cost
1

yields a valid path. For this com-

plete joined path, that is, path {us, u2, ug}, we have cost = (5, 5). So we can see that the joined path is valid because

its primary cost is smaller than the best-known cost (f1(x) < f1 or 5 < 7). Therefore, the ESU strategy captures x as a

tentative solution node in Sol and updates f1 ← 5 and f sol

2
← 5. x also carries a terminal state, since we have hf

1
(u2) =

ubf
2
(u2) = 2. Hence, WC-A* does not need to expand x considering the fact that the tentative solution via u2 is already

stored in Sol.
• Iteration 3: WC-A* did not insert any new node in Open in the previous iteration, so there exists only one unexplored

node in the priority queue. The algorithm extracts this node as x ← [(6, 3), (3, 1), u3]. The extracted node x is then checked

against the termination criterion, similar to other extracted nodes. Now, we can see that x is an invalid node since its

f1-value is no longer within the bound. In other words, we have f1(x) > f1 or 6 > 5 equivalently. Therefore, WC-A*

successfully terminates with a cost-optimal solution node in Sol with costs (5, 5).

We now prove the correctness of constrained pathfinding with WC-A* (see SM. 3.2 for the correctness without tie-breaking).

Theorem 1. WC-A* returns a node corresponding to a cost-optimal solution path for the WCSPP.

Proof. WC-A* enumerates all valid partial paths from the initial state towards the target state in search of an optimal

solution. Our proposed pruning strategies ensure that WC-A* never removes a solution node from the search space

(Lemmas SM. 1.5 and SM. 1.6). In addition, the ESU strategy correctly keeps track of the lexicographically smallest
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AHMADI ET AL. 15

Algorithm 9: WC-EBBA*par High-level

Input: A problem instance (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) with the weight limit W
Output: A node pair corresponding with the cost-optimal feasible solution Sol

1 h,ub, f, S′ ← Initialize WC-EBBA*par (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙,𝑊 ) ⊳ Algorithm 10

2 𝛽

f
, 𝛽

b ← Obtain forward and backward budget factors using h1-values of non-dominated states in S′. ⊳ Equation (3)

3 Sol ← (∅,∅), f sol

2
← ∞

4 do in parallel
5 Run a biased WC-EBBA*par search for (G, cost, start, goal) in the forward direction with global upper bounds f,

heuristic functions (h, ub), budget factors (𝛽
f
, 𝛽

b
) and initial solution Sol with secondary cost f sol

2
. ⊳ Algorithm 11

6 Run a biased WC-EBBA*par search for (G, cost, start, goal) in the backward direction with global upper bounds f,

heuristic functions (h, ub), budget factors (𝛽
f
, 𝛽

b
) and initial solution Sol with secondary cost f sol

2
. ⊳ Algorithm 11

7 return Sol

tentative solutions discovered during the search (Lemma SM. 1.10), while avoiding unnecessary expansion of nodes

with terminal state (Lemma SM. 1.11). Therefore, we conclude that WC-A* terminates with a cost-optimal solution,

even with zero-weight cycles (Lemma SM. 1.9). ▪

5 CONSTRAINED PATHFINDING WITH PARALLEL WC-EBBA*

The enhanced biased bidirectional A* search algorithm for the WCSPP, or WC-EBBA* [5], is constructed based on the

RC-BDA* algorithm of Thomas et al. [32], both following the standard bidirectional search first presented by Pohl [24]. In con-

trast to RC-BDA* where each search direction is allocated 50% of the weight budget, the search in direction 𝑑 of WC-EBBA*

works with a budget factor 𝛽
𝑑 ∈ [0, 1]. We say the (bidirectional) search is biased towards direction 𝑑 if 𝛽

𝑑

> 0.5, which means

allocating more budget to the search of direction 𝑑 than that of the opposite direction 𝑑

′
. WC-EBBA* uses separate priority

queues for its forward and backward searches, namely Openf
and Openb

, and only explores the graph in one direction at a time.

Depending on the location of the least cost node in Openf ∪Openb
, we have either 𝑑 = forward or 𝑑 = backward. For example,

if the least-cost node in Openf
is smaller than the least-cost node in Openb

, WC-EBBA* attempts a forward expansion. In this

interleaved search scheme, there might be cases where the algorithm mostly performs long runs of uni-directional expansions, a

likely case when the search frontier of one direction reaches a dense part of the graph. Although WC-EBBA* tries to balance bidi-

rectional search effort by changing the weight budget of each direction, there is always a chance for slower directions to become

dominant with this type of queuing strategy. In addition, WC-EBBA* still suffers from a lengthy initialization phase, even with

its more efficient bounded searches. Faster than the traditional one-to-all approaches, the initialization phase of WC-EBBA*

obtains its necessary heuristics via four bounded A* searches in series. However, there might be cases where the algorithm

spends more time in its initialization phase than the actual constrained search, especially in easy instances with loose weight

constraints. Section SM. 2 revisits the standard WC-EBBA* algorithm in the context of heuristic search, providing a detailed

overview of all key steps enriched with some of the procedures considered in this article, such as the ESU strategy. Further, it

introduces refined procedures that can handle a variant of WC-EBBA* with no tie-breaking in the priority queue (see SM. 2.3).

In this section, we present a new variant of the WC-EBBA* algorithm that leverages parallelism to overcome the aforemen-

tioned shortcomings. Algorithm 9 shows, at a high level, three main steps for our new parallel version WC-EBBA*par. Similar

to its standard variant, WC-EBBA*par obtains its required heuristics and also global upper bounds in the first place via two

rounds of parallel searches. It then uses a set of non-dominated states obtained from the initialization phase to determine the

forward and backward budget factors 𝛽
f

and 𝛽

b
, biasing the main search towards the direction showing a larger budget factor

(see SM. 2.2 for details). In the next step, the search initializes a (shared) solution node pair Sol with an unknown secondary cost

f sol

2
to keep track of the best solution obtained in both directions. In the last step, the algorithm runs two biased WC-EBBA*par

searches concurrently, each capable of updating shared parameters, such as the global upper bound f1 and the solution node pair

Sol. Comparing the structure of both algorithms at this high level, we can see that WC-EBBA*par differs from WC-EBBA* in

two aspects: initialization and search structure. We will explain each of these in detail below.

5.1 Initialization
Our bidirectional WC-EBBA*par requires both forward and backward lower/upper bound functions. To speed up the preliminary

searches, following WC-BA*, we compute the necessary functions in two rounds of parallel searches as shown in Algorithm 10.
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16 AHMADI ET AL.

Algorithm 10: Initialization phase of WC-EBBA*par and WC-BA*

Input: The problem instance (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) with the weight limit W
Output: WCSPP’s bidirectional heuristic functions h and ub, global upper bounds f, also non-dominated states S′

1 Set global upper bounds: f1 ← ∞ and f2 ← W
2 do in parallel
3 hf

2
, ubf

1
← Run f2-bounded backward A* (from 𝑔𝑜𝑎𝑙 using an admissible heuristic) on cost2, use cost1 as a tie-breaker,

update f1 with ubf
1
(𝑠𝑡𝑎𝑟𝑡) when 𝑠𝑡𝑎𝑟𝑡 is going to get expandedand stop before expanding a state with f2>f2.

4 hb
1
, ubb

2
← Run f1-bounded forward A* (from 𝑠𝑡𝑎𝑟𝑡 using an admissible heuristic) on cost1, use cost2 as a tie-breaker,

and stop before expanding a state with f1>f1.

5 do in parallel
6 hb

2
, ubb

1
← Run f2-bounded forward A* (using hf

2
as an admissible heuristic) on cost2, use cost1 as a tie-breaker,

ignore unexplored states in the previous round lines 3 and 4,update f1 via paths matching if feasible

and stop before expanding a state with f2>f2.

7 hf
1
, ubf

2
← Run f1-bounded backward A* (using hb

1
an admissible heuristic) on cost1, use cost2 as a tie-breaker,

ignore unexplored states in the previous round lines 3 and 4,update f1 via paths matching if feasible

and stop before expanding a state with f1>f1.

8 S′ ← non-dominated states explored in both searches of the last round (lines 6 and 7)

9 return (hf
,hb), (ubf

,ubb), f, S′

1. Round one: The algorithm performs a bounded forward search on cost
1

and, in parallel, a bounded backward search on

cost
2
. As the initial global upper bound f1 is not known beforehand, the bounded search on cost

2
updates the global upper

bound f1 with ubf
1
(start) as soon as it computes hf

2
(start). Since both searches explore the graph concurrently and have

direct access to shared parameters, the forward A* search on cost
1

will turn into a bounded search as soon as f1 gets

updated by the concurrent search in the opposite direction. When the parallel searches of the first round terminate, the

initialization phase has computed two heuristic functions, namely hf
2

and hb
1
. There are two cases where we can terminate

the parallel searches of the first round early without needing to go into the second round of concurrent searches: (1) the

problem has no optimal solution if we have found hf
2
(start) > W; (2) if the shortest path on cost

1
has been found feasible

and ubb
2
(goal) ≤ W.

2. Round two: The algorithm runs a complementary backward A* search on cost
1

and, at the same time, a bounded forward

A* search on cost
2
. Benefiting from the results of the first round, the searches of the second round use two functions hf

2

and hb
1

as informed heuristics to guide A*. Hence, we can expect faster searches in round two. The second round will also

perform two tasks during the search. First, it only explores the expanded states of round one, that is, none of the searches

in the second round will explore states identified as out-of-bounds in round one. Second, it tries to update the global

upper bound f1 with partial path matching. Since each state expanded in the searches of the second round has access to

at least one complementary shortest path obtained via the first round, we can update the global upper bound f1 if joining

partial paths with their complementary optimum paths yields a valid start-goal path.

When the initialization phase is complete, WC-EBBA*par uses lower bound heuristics hf
1

and hb
1

to determine the search

budget factors 𝛽

f
and 𝛽

b
as in WC-EBBA* (via Equation (3) in SM. 2). It then initializes a (shared) node pair Sol with an

unknown secondary cost f sol

2
to be updated during the main search. Note that the order of searches in the initialization phase

of WC-EBBA*par is slightly different from that of WC-EBBA*. The sequential preliminary searches in WC-EBBA* allows

us to first reduce the graph size via two bounded searches on cost
2
, followed by two complementary searches on cost

1
. How-

ever, this ordering might not help reduce the graph size in the parallel scheme, mainly because we would not be able to use

heuristics obtained in one search to inform the search in the opposite direction. For example, if we run concurrent forward and

backward searches on cost
2

in the first round, there would be no lower bound heuristics for either of the searches, and thus they

would turn into less informed bounded A*. The other possible configuration could be running parallel searches of each round

in one direction, for example, searching backwards on cost
1

and cost
2

in the first round. The main problem with this config-

uration is that heuristics obtained in the direction of the second round would become much more informed than heuristics of

the first round in the opposite direction. Hence, the search in one direction would always be weaker on both cost
1

and cost
2

heuristics.

In summary, our proposed parallel search ordering ensures that: (1) the second round can benefit from the heuristics obtained

in the first round to reduce the graph size, delivering S′ to the next phase as a subset of valid states explored in both rounds;
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AHMADI ET AL. 17

Algorithm 11: WC-EBBA*par search

Input: Problem (G, cost, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙), search direction 𝑑, global upper bounds f, search heuristics (h,ub), budget

factors 𝛽
f

and 𝛽

b
, and an initial solution Sol with the secondary cost f min

2

Output: A node pair corresponding with an optimal solution

1 Setup(𝑑) ⊳ Procedure 1
2 𝑑

′ ← opposite direction of 𝑑

3 while Open𝑑 ≠ ∅ do
4 x ← A node with the lexicographically smallest (f1, f2) costs in Open𝑑

5 Remove node x from Open𝑑

6 if f1(x)>f1 then break
7 Explore(x, 𝑑, 𝑑′) ⊳ Procedure 12

8 return Sol

Procedure 12: Explore(x, 𝑑, 𝑑′)

1 if g2(x) ≥ g𝑑

min(s(x)) then continue
2 g𝑑

min(s(x)) ← g2(x)
3 ESU(x, 𝑑) in (f1, f2) order ⊳ Procedure 3
4 if h𝑑

1
(s(x)) = ub𝑑

1
(s(x)) then continue

5 if g2(x) ≤ 𝛽

𝑑 × f2 then
6 ExP(x, 𝑑) in (f1, f2) order ⊳ Procedure 2

7 if h𝑑

2
(s(x)) ≤ 𝛽

𝑑

′ × f2 or |𝜒𝑑

′ (s(x))| > 0 then
8 Match(x, 𝑑′) ⊳ Procedure SM. 4
9 Store(x, 𝑑) ⊳ Procedure SM. 5

(2) each constrained search in the next phase can benefit from a set of informed heuristics for either pruning or guiding the

search in the bidirectional setting; (3) the initialization time is improved as there are only two rounds of bounded A*.

5.2 Constrained search
In this phase, WC-EBBA*par executes two constrained bidirectional searches in parallel. The parallel framework allows both

constrained searches of WC-EBBA* to explore the graph concurrently, so the search is no longer led by one direction at a time.

Algorithm 11 shows the main procedures of the constrained search in the generic direction 𝑑.

Algorithm description: Given f and Sol as the shared data structures of the algorithm, each (constrained) search starts

with initializing the search in direction 𝑑 via the Setup(𝑑) procedure and also with identifying 𝑑

′
as the opposite direction. At

this point, the search has one node in Open𝑑

associated with the initial state in direction 𝑑. In contrast to WC-EBBA*, each

search in WC-EBBA*par only works with one priority queue. As can be seen in line 4 of Algorithm 11, the constrained search

in direction 𝑑 is continued by exploring nodes in Open𝑑

in the (f1, f2) order. Given x as the least cost node in the priority queue,

the algorithm removes x from Open𝑑

and checks it against the termination criterion via line 6. If the algorithm finds x (as the

least cost node) out-of-bounds, the search in direction 𝑑 can safely terminate (see Lemma SM. 1.9). Otherwise, if the node’s

estimated cost is within the bounds, the search will follow the standard procedures of WC-EBBA* to explore x as a valid node.

The procedure includes matching x with candidate nodes of the opposite direction stored in 𝜒

𝑑

′ (s(x)) and then storing x in

𝜒

𝑑(s(x)) for future expansions with s(x) in direction 𝑑

′
, only if x is in the coupling area (see SM. 2 for more details). For the

sake of clarity, we present the main steps involved in node exploration via Explore (x, 𝑑, 𝑑′) in Procedure 12, with its refined

Match(x, 𝑑′) and Store(x, 𝑑) methods described in Procedures SM. 4 and SM. 5, respectively.

Unlike WC-EBBA* where the search is led by the least-cost node of one direction, WC-EBBA*par runs two parallel searches

with independent priority queues. This means that there are no dependencies between the f1-value of nodes in the forward and

backward priority queues, and it is very likely for one of the directions to show faster progress on f1-values. In other words, the

faster search is no longer halted by the slower search, and WC-EBBA*par can potentially find the optimal solution faster than

WC-EBBA*. Note that when WC-EBBA* extracts a node x from Open𝑑

, it ensures that all nodes in Open𝑑′
have a primary cost
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18 AHMADI ET AL.

no smaller than f1(x). Given this important feature in WC-EBBA*par, we now prove the correctness of the algorithm (see SM.

2.3 for the correctness of WC-EBBA* without tie-breaking).

Theorem 2. WC-EBBA*par returns a node pair corresponding with a cost-optimal solution path for the WCSPP.

Proof. As WC-EBBA*par employs WC-EBBA*’s procedures for its node expansion, the correctness of the involved

strategies are directly derived from WC-EBBA*’s correctness (provided in SM. 2). Thus, we just discuss the cor-

rectness of the stopping criterion. We already know that when the search in direction 𝑑 terminates, there is no

promising node in the corresponding priority queue with a cost estimate smaller than the best-known solution cost

f1. However, since both searches use the same stopping criterion, WC-EBBA*par will not terminate until both (con-

strained) searches terminate. Generally, if one direction has already completed its search by surpassing the global

upper bound f1, the algorithm waits for the other (active) direction to confirm the optimality of the solution stored

in Sol. In this situation, if the active direction finds a better solution, it can still update f1 and Sol accordingly,

otherwise, Sol remains optimal. In either case, the active search will eventually confirm the optimality of the exist-

ing solution by surpassing the established upper bound. Furthermore, reducing the global upper bound f1 in the

active search does not affect the correctness of the other (terminated) search, essentially because the algorithm

never builds a solution path with invalid nodes. Therefore, WC-EBBA*par guarantees the optimality of Sol when it

terminates. ▪

Memory: Both WC-EBBA* and WC-EBBA*par use the same data structures to initialize their bidirectional searches, some

of them shared between the searches in WC-EBBA*par. Therefore, there is no difference in the minimum space requirement of

the algorithms. However, there is a minor search overhead associated with parallel search in WC-EBBA*par. Recall the queuing

strategy in WC-EBBA*. The sequential search guarantees that the entire algorithm never explores nodes with an f1-value larger

than the optimal cost f1. However, this is not always the case in WC-EBBA*par. As an example, the algorithm may terminate its

constrained search in direction 𝑑 with a tentative solution of cost f1, but later discovers an optimal solution pair (x, y) with the

primary cost f ′
1
< f1 in the opposite direction 𝑑

′
. In this case, it is not difficult to see that the expansion of nodes with f1-values

larger than the optimal cost f ′
1

in direction 𝑑 was unnecessary. Therefore, we expect WC-EBBA*par to use more space than

WC-EBBA* due to this resulting search overhead.

6 PRACTICAL CONSIDERATIONS

As A*-based algorithms enumerate all valid paths, the size of the Open lists can grow exponentially during the constrained

search. This case is more serious in A* with lazy dominance tests, essentially because priority queues also contain dominated

nodes. Furthermore, we can similarly see that the number of generated nodes will show exponential growth and the search may

need significant memory to store all nodes for solution path construction. For instance, A*-algorithms can easily generate and

expand billions of search nodes in hard problems. Following the practical considerations presented in Ahmadi et al. [2] for the

bi-objective search, we now describe two techniques to handle search nodes generated in the constrained search more efficiently.

6.1 More efficient priority queues
The performance of constrained A* search with lazy dominance test can suffer when the queue size grows to very large numbers

of nodes. Contrary to eager dominance or other conservative approaches where the search rigorously removes dominated nodes

in the queue, as in Pulido et al. [26], none of our A* searches tries to remove the dominated nodes from the queue unless they

are extracted. There are some Dijkstra-like approaches [12] in the literature that only keep one best candidate node of each

state in the priority queue, as in Sedeño-Noda and Colebrook [30]. However, our A*-based algorithms do not work with such

substitution of nodes during the search. Therefore, we need to invest in designing efficient priority queues to effectively order

significant numbers of nodes in constrained search with A*. We describe our node queuing strategies as follows.

In all of our A*-based algorithms, the lower and upper bounds on the fp-values of the search nodes are known prior to

the constrained searches, namely via the heuristic function h𝑑

p and the global upper bound fp. Let [fmin, fmax] be the range of

all possible fp-values generated by A* in the (fp, fs) order. To achieve faster operations in our Open lists, we use fixed-size

bucket-based queues. Although there may be cases where the number of nodes in the priority queue is bounded and the bucket

list is sparsely populated, for the majority of cases where the number of nodes grows exponentially in our A* searches, we

expect to see almost all the buckets filled. To this end, we investigate two types of bucket-based priority queues based on the

multi-level bucket data structures in the literature [9–11]. Consider a bucket list withΔf ∈ N+
(as a fixed parameter) identifying
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AHMADI ET AL. 19

(A) (B) (C)

FIGURE 2 Schematic of priority queues studied: (A) Conventional binary heap (BH) queue with no limit on fp-values; (B) hybrid queue with buckets in the

higher level and binary heap in the lower level. Δf denotes bucket width; (C) two-level bucket queue with linked list (LL) in buckets of both levels. The width

of the low-level buckets is one.

the bucket width. We limit the size of the bucket list such that a node with fmin (resp. fmax) is always placed in the first (resp.

last) bucket, that is, we have

Bucket size (BS) =
⌊

fmax − fmin

Δf

⌋

+ 1. (1)

Given BS and Δf denoting the bucket size and width, respectively, we now explain each queue type as follows.

1. Bucket queue: a two-level queue with buckets in both levels [9, 10]. A high-level bucket i ∈ N
0

<BS = {i ∈ N0|i < BS}
contains all nodes whose fp-value falls in the [fmin+ i×Δf , fmin+(i+1)×Δf −1] range except for the nonempty high-level

bucket with the smallest index k. A node x with fp(x) in the [fmin + k × Δf , fmin + (k + 1) × Δf − 1] range is maintained

in the low-level bucket. The size of the low-level bucket is Δf , so we have one bucket for every distinct fp-value in the

range. In other words, a low-level bucket j ∈ N
0

<Δf = {j ∈ N0|j < Δf } contains all nodes whose fp-value is equal to

fmin + k × Δf + j. To handle nodes in each bucket, we can use a linked list structure with two node extraction strategies:

first-in, first-out (FIFO) or last-in, first-out (LIFO). This queue is only able to handle integer costs.

2. Hybrid queue: a two-level priority queue with buckets in the higher level and a binary heap in the lower level [10]. Similar

to the bucket queue, a high-level bucket i ∈ N
0

<BS = {i ∈ N0|i < BS} contains all nodes whose fp-value falls in the

[fmin + i ×Δf , fmin + (i+ 1) × Δf − 1] range except for the nonempty high-level bucket with the smallest index k. A node

x with fp(x) in the range [fmin + k ×Δf , fmin + (k + 1) × Δf − 1] is maintained in the low-level binary heap structure. This

queue type can handle both integer and non-integer costs.

Figure 2 illustrates our priority queues and compares them against the traditional binary heap queue. In this figure, Δf
denotes the bucket width. We can see that the hybrid queue can be converted into a form of binary heap if we pick a large enough

bucket width. We can also convert our two-level bucket queue into a one-level bucket queue [11] by simply setting Δf = 1.

In this case, nodes can be directly added (removed) to (from) the high-level buckets and the use of the low-level bucket is no

longer necessary.

Queue operations: To add new nodes to the queue, we simply insert them into high-level buckets corresponding with

their fp-value. To find and extract the least-cost node, since fp-values in A* are monotonically non-decreasing, we can simply

scan the high-level buckets from left (fmin) to right (fmax). The first bucket is always a non-empty bucket when our constrained

searches are initialized. Let k be the smallest index of a non-empty high-level bucket. We transfer all nodes in the nonempty

high-level bucket k to the low-level structure for upcoming extractions. In the meantime, if the queue receives a new node with

an fp-value corresponding with index k, we directly add the node to the low-level data structure. Nodes in the low-level structure

are explored during the search in the order of their fp-values. Before each node extraction, if all nodes in the low-level data

structure are already extracted, we increase k to the index of the next non-empty (high-level) bucket and then transfer all nodes

of the non-empty bucket to the low-level data structure. Nodes are extracted from the low-level structure only.

Tie-breaking: The bucket queue with linked lists is obviously unable to handle tie-breaking, but it instead offers fast queue

operations. In the hybrid queue with binary heaps, however, we can break ties between fp-values by simply comparing nodes

on their fs-values in the low-level binary heap.

6.2 Memory efficient backtracking
Node generation is a necessary part of all of our WCSPP algorithms with A*. Each node occupies a constant amount of memory

and represents a partial path. A typical node representation would contain information such as f-values, the node’s corresponding

state, its position in the priority queue, and its parent, required for solution path construction. Considering the huge number

of generated nodes in difficult problems, we use our memory-efficient approach in Ahmadi et al. [2] as part of solution path

construction for all of our studied A* algorithms. Since constrained search in A* only expands each node at most once (the
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20 AHMADI ET AL.

search prunes cycles), every time a node is expanded, we store its backtracking information in compact data structures outside

the node and then recycle the memory of the processed node for future node expansions. In other words, since the majority

of a node’s information will no longer be required for solution path construction (parameters such as position of the node in

the queue and f-values), we only extract the minimal backtracking information and return the node to the memory manager.

Clearly, the memory occupied by nodes pruned during the search can similarly be recycled (see the example given in SM. 4 for

further illustration). The final size of the compact structure varies from instance to instance, but it is shown that, compared to

the conventional back-pointer approach, the compact approach is on average five times more efficient in terms of memory [2].

7 EXPERIMENTAL ANALYSIS

We compare our new algorithms with the state-of-the-art solution approaches available for the WCSPP and RCSPP and evaluate

them on a set of 2000 WCSPP instances [4] for 12 maps in the 9th DIMACS implementation challenge,
1

with the largest map

containing around 24 M nodes and 57 M edges (see SM. 5.1 for the benchmark details). Following the literature, we define the

weight limit W based on the tightness of the constraint 𝛿 as:

𝛿 = W − h2

ub2 − h2

for 𝛿 ∈ {10%, 20%, … , 70%, 80%}, (2)

where h2 and ub2 are, respectively, lower and upper bounds on cost
2

of start-goal paths. In this setup, high (resp. low) values

of 𝛿 mean that the weight limit W is loose (resp. tight).

Studied algorithms: we consider the award-winning BiPulse algorithm of Cabrera et al. [8], WC-EBBA* [5], and WC-BA*

[4] algorithms. For the other constrained search methods RC-BDA* [32], Pulse [21] and CSP [29], although shown to be slower

than WC-EBBA* in Ahmadi et al. [5], we evaluate their performance against the benchmark instances in SM. 5.3.

Implementation: We implemented all the A*-based algorithms (WC-A*, WC-BA*, WC-EBBA*, and WC-EBBA*par)

in C++ and used the Java implementation of the BiPulse algorithm kindly provided to us by its authors. For WC-BA*, we

implemented its standard variant (with the HTF method). Our graph implementation removes duplicate edges from the DIMCAS

graphs, that is, if there are two (or more) edges between a pair of states in the graph, we only keep the lightest edge. In addition,

for the initialization phase of the A*-based algorithms, we use spherical distance as an admissible heuristic function for both

(distance and time) objectives. All the A*-based algorithms use the same type of priority queue and solution construction

approach. In particular, since all costs in the benchmark instances are integer, we use bucket queues with linked lists (using

the LIFO strategy with Δf = 1) for the priority queue of constrained A* searches, along with the compact approach discussed

in Section 6 for solution path construction. There is no procedure for the solution path construction in the Pulse and BiPulse

implementations, so the code only returns optimal costs. All C++ code was compiled with O3 optimization settings using the

GCC7.5 compiler. The Java code was compiled with OpenJDK version 1.8.0_292. We ran all experiments on an AMD EPYC

7543 processor running at 2.8 GHz and with 128 GB of RAM, under the SUSE Linux Server 15.2 environment and with a

1-h timeout. In addition, we allocated two CPU cores to all parallel algorithms. There are five algorithms and 2000 instances,

resulting in 10 000 runs. However, we realized that BiPulse is unable to handle our two largest maps CTR and USA (400

instances altogether) due to some inefficiencies in its graph implementation. We can similarly see that BiPulse has not been

tested on these two graphs in its original paper [8] either. In order to achieve more consistent computation time in the parallel

setting, especially in easy instances with small runtime, we perform five consecutive runs of each algorithm and store the results

of the run showing the median runtime (algorithms attempt each instance five times). Thus, we perform 5 × 9600 = 48 000

runs. All runtimes we report in this article include initialization time. Our codes, benchmark instances and detailed results are

publicly available.
2

7.1 Algorithmic performance
We now analyse the performance of the selected algorithms over the benchmark instances as provided in Table 2. We have

160 point-to-point WCSPP instances in each map, except in the USA map, for which we have 240 instances. As stated before,

BiPulse was unable to handle instances of two maps. We report for each algorithm the number of solved cases |S|, the runtime in

seconds and memory usage in MB. Note that because of the difficulties in reporting the memory usage, we allow 1 MB tolerance

in our experiments. For the runtime of unsolved cases, we generously report a runtime of 1 h (the timeout) by assuming that

the algorithm would have found the optimal solution right after the timeout. We discuss the results in three aspects as follows.

1
DIMACS - Shortest Paths; 2005. http://www.diag.uniroma1.it/challenge9/.

2
https://bitbucket.org/s-ahmadi/biobj.
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AHMADI ET AL. 21

TABLE 2 Number of solved cases |S| (out of 240 for USA and 160 for the other maps), runtime and memory use of the algorithms.

Runtime(s) Memory(MB)

Map Algorithm |S| Min Avg. Max Avg. Max

NY WC-A* 160 0.01 0.06 0.15 2 7
WC-BA* 160 0.01 0.06 0.19 3 8

WC-EBBA* 160 0.01 0.08 0.16 2 13

WC-EBBA*par 160 0.01 0.06 0.15 3 14

BiPulse 160 0.46 0.85 2.35 13 126

BAY WC-A* 160 0.01 0.10 0.40 3 20

WC-BA* 160 0.01 0.09 0.39 3 16
WC-EBBA* 160 0.01 0.13 0.46 4 35

WC-EBBA*par 160 0.01 0.11 0.49 5 20

BiPulse 160 0.54 1.08 4.05 41 596

COL WC-A* 160 0.02 0.22 1.77 7 67

WC-BA* 160 0.03 0.20 1.30 8 60
WC-EBBA* 160 0.04 0.25 1.01 10 138

WC-EBBA*par 160 0.04 0.22 1.25 11 84

BiPulse 160 0.73 2.85 27.46 160 1035

FLA WC-A* 160 0.19 1.45 15.33 38 337

WC-BA* 160 0.16 1.11 4.92 40 183
WC-EBBA* 160 0.22 1.29 4.99 38 199

WC-EBBA*par 160 0.17 1.15 4.57 50 212

BiPulse 160 1.47 35.29 396.44 287 1271

NW WC-A* 160 0.12 1.83 12.90 57 314
WC-BA* 160 0.10 2.20 18.50 86 585

WC-EBBA* 160 0.13 2.11 16.20 113 1039

WC-EBBA*par 160 0.11 1.81 12.54 138 1084

BiPulse 160 1.58 163.50 1440.52 849 6586

NE WC-A* 160 0.17 2.07 31.51 53 557
WC-BA* 160 0.15 2.19 31.50 80 1003

WC-EBBA* 160 0.21 2.67 32.00 82 699

WC-EBBA*par 160 0.20 1.87 27.11 86 735

BiPulse 156 2.11 237.58 3600.00 496 6350

CAL WC-A* 160 0.12 4.10 57.78 96 1295

WC-BA* 160 0.10 1.87 21.08 57 711
WC-EBBA* 160 0.12 1.93 11.71 60 460

WC-EBBA*par 160 0.09 1.57 10.31 78 834

BiPulse 160 2.26 154.10 2640.61 518 5068

LKS WC-A* 160 0.09 25.45 298.96 507 4246
WC-BA* 160 0.08 28.18 334.46 830 8122

WC-EBBA* 160 0.07 29.14 349.12 872 5839

WC-EBBA*par 160 0.07 20.13 244.63 1022 8294

BiPulse 109 2.76 1439.84 3600.00 980 5134

E WC-A* 160 0.07 36.16 349.42 673 5180
WC-BA* 160 0.09 35.72 366.17 984 7496

WC-EBBA* 160 0.10 43.15 418.95 1388 10 581

WC-EBBA*par 160 0.10 33.45 310.04 1522 13 373

BiPulse 99 3.66 1617.31 3600.00 573 4000

W WC-A* 160 0.32 31.25 349.29 560 4990
WC-BA* 160 0.43 38.57 412.05 920 6794

WC-EBBA* 160 0.36 40.62 367.12 985 6796

WC-EBBA*par 160 0.39 35.66 390.92 1294 13 354

BiPulse 101 7.76 1620.46 3600.00 547 5421
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22 AHMADI ET AL.

TABLE 2 (Continued)

Runtime(s) Memory(MB)

Map Algorithm |S| Min Avg. Max Avg. Max

CTR WC-A* 160 0.27 74.62 663.09 1063 7548
WC-BA* 160 0.26 80.27 631.31 1738 11 073

WC-EBBA* 160 0.29 99.39 758.78 2223 17 463

WC-EBBA*par 160 0.26 67.13 536.69 2257 17 508

BiPulse - - - - - -

USA WC-A* 236 0.20 471.61 3600.00 5272 35 783

WC-BA* 240 0.17 394.11 3444.40 8577 68 279

WC-EBBA* 240 0.26 379.19 2120.83 7709 63 995

WC-EBBA*par 240 0.21 298.72 1651.07 8791 66 932

BiPulse - - - - - -

Note: Runtime of unsolved instances is assumed to be 3600 s. Memory is reported only for the solved cases and 1 MB=10
3

KB.

Solved cases: All A*-based algorithms have been able to fully solve all instances of 11 maps. For the BiPulse algorithm,

however, we can see it has been struggling with some instances from the NE, LKS, E and W maps. Hence, we could expect even

more unsolved cases in the larger maps CTR and USA if we were able to evaluate BiPulse on that set of instances. Comparing

the number of solved instances of A*-based algorithms in the USA map, we can see that WC-EBBA* (both sequential and

parallel versions) and WC-BA* are the best-performing algorithms with all instances solved. For WC-BA*, we can see that

it solves its most difficult instance just 2.5 min before the timeout. For WC-A*, however, we see it is the only algorithm that

shows unsolved cases within the 1-h timeout when compared with its A*-based competitors.

Runtime: We report the minimum, average, and maximum runtime of the algorithms in each map. Boldface values denote

the smallest runtime among all algorithms. We can see that the runtime of all algorithms increases with the graph size, and we

have obtained larger values in larger graphs. From the results, it becomes clear that the improved bidirectional search scheme

in BiPulse does not contribute to runtimes competitive with A* and the depth-first search nature of BiPulse is still a potential

reason for its poor performance on large graphs. Comparing the average runtime of BiPulse against the A*-based algorithms,

we see it can be up to two orders of magnitude slower than its competitors. Among the A*-based methods, we can nominate

our WC-EBBA*par as the fastest algorithm due to showing smaller runtimes overall, specifically in larger maps CTR and USA

by showing the maximum runtime of 28 min. For more detailed runtime analyses, please see SM. 5.2.

Memory: Table 2 also presents the average and maximum memory usage of the algorithms over the solved instances. The

results show that, although BiPulse’s implementation does not handle solution path construction, its memory requirement is

considerably higher than its competitors. Among the A*-based algorithms, we can see that WC-A* and WC-BA* show smaller

values than WC-EBBA* and its parallel variant WC-EBBA*par. In the E map, for example, the results show that the maximum

memory requirement of WC-EBBA* and WC-EBBA*par in difficult instances can roughly be as big as 10.6 and 13.4 GB,

respectively, but both WC-A* and WC-BA* manage such instances with about 5.2–7.5 GB of memory in nearly the same

amount of time. Although time and space are highly correlated in search strategies and slower algorithms are likely to generate

more nodes, we can see how frontier collision in WC-EBBA* contributes to faster runtime but in turn higher memory usage

due to the partial path matching procedure. In the NW, E and LKS maps for example, the results show that WC-A* outperforms

WC-EBBA* in terms of runtime while using two times less memory on average. WC-A* also shows comparable performance

to WC-EBBA*par in the NW map (only 20 ms slower on average) but consumes about 2.4 times less memory on average.

Comparing the average memory usage of WC-A* and WC-BA*, we realize that WC-BA* might consume up to 65% more space

than WC-A* on average, and in almost all of our large graphs (except the USA map), they both perform better than WC-EBBA*

and WC-EBBA*par in memory use. We have provided a more detailed memory analysis of the algorithms in SM. 5.2.

7.2 Performance impact of constraint tightness
We now analyse the performance of each algorithm with varying levels of tightness. In the experiment setup, we used eight

values for the tightness of the WCSPP constraint, namely values ranging from 10% to 80%. We use box plots for all of our

constraint-based analyses to show the distribution of values over the instances. For the sake of clarity, we show in Figure 3 what

type of statistical information each box plot presents.

To better study the strengths and weaknesses of the algorithms across various levels of tightness, we need to undertake a

form of one-to-one comparison. To this end, we define our baseline to be a virtual oracle that cannot be beaten by any of the
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AHMADI ET AL. 23

FIGURE 3 A schematic of box-plot visualizing the distribution of data: The plot shows the minimum, the first quartile (25% of data), the median, the third

quartile (75% of data), the mean and the maximum (minimum and maximum within the 1.5× IQR).

FIGURE 4 The distribution of slowdown factors for all the A*-based algorithms against the virtual best oracle in each level of tightness. Values above the

plots show the maximum slowdown factor observed in the experiments (outliers are not shown).

algorithms in terms of runtime. In other words, for every instance, the virtual oracle is given the best (i.e., smallest) runtime

of all algorithms. Given the virtual best oracle as the baseline, we then calculate for every runtime (across all algorithms) a

slowdown factor 𝜙s with the virtual oracle’s runtime as the baseline, that is, we have 𝜙s ≥ 1 and at least one algorithm with

𝜙s = 1 for every instance. This means that algorithms with 𝜙s-values close to one are as good as the virtual best oracle. For

the sake of better readability, this analysis does not include BiPulse as it shows significantly larger slowdown factors compared

to our A*-based algorithms, and there was no instance for which BiPulse achieves 𝜙s = 1 (it never beats the virtual oracle).

Figure 4 shows the range of slowdown factors obtained for each algorithm across all levels of tightness.

We describe patterns for each algorithm.

• WC-A*: This algorithm works consistently well across all levels of tightness in terms of the median slowdown factor.

However, WC-A*’s performance gets closer to that of the virtual best oracle when the weight constraint becomes loose.

The main reason for this fast response in loose constraints is in WC-A*’s simple (unidirectional) initialization phase.

Problems with loose constraints normally appear to be easy, mainly because the optimal solution is not far from the initial

solution. Therefore, there might be easy cases where the initialization time is the dominant term in the total execution time,

making algorithms with a faster initialization phase the best performer. Having compared the maximum slowdown factors

of WC-A* with other algorithms, we can observe that WC-A* is the only algorithm that shows the largest maximum

slowdown factors in almost all levels of tightness (except in 10%). This means that it will be more likely to get the worst

performance with WC-A* than with other A*-based algorithms.

• WC-BA*: Similar to WC-A*, WC-BA* performs well in loose constraints, but is relatively slow in tightly constrained

instances. However, WC-BA* shows the best average factor in the 10%–40% tightness range. More importantly, the

maximum slowdown factors of WC-BA* are considerably better than that of WC-A*, and even smaller than WC-EBBA*

in almost all levels of tightness. We can nominate one potential reason for this behavior. WC-BA* is a bidirectional

algorithm, so its worst-case performance is far less severe than WC-A*. More accurately, if the search in one direction

is slow in some difficult instances, the concurrent search can help WC-BA* in reducing the search space. In addition,

WC-BA* uses bidirectional lower bounds and is also able to tune its heuristics during the search, so it effectively does

more pruning in tight constraints and will consequently perform better in the runtime comparison. In loose constraints,

WC-A* and WC-BA* perform quite similarly as WC-BA*’s initialization phase is done in parallel, but there may be

cases (in the 80% tightness) where WC-A* performs better mainly because the search space is very small and heuristic

tuning and parallel search in WC-BA* only adds unnecessary overhead.
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24 AHMADI ET AL.

• WC-EBBA*: This algorithm presents comparable runtimes only in very tightly constrained instances (10%) and is the

weakest solution method in mid-range and loose constraints if we compare algorithms based on their median slowdown

factors. However, the average performance of WC-EBBA* is still better than WC-A* in the 10%–60% range. In terms of

the worst-case performance (maximum slowdown), WC-EBBA* lies between WC-A* and WC-BA*, but still performs

far better than WC-A* mainly due to its bidirectional framework. However, compared to the other bidirectional algorithm

WC-BA*, we can see that WC-EBBA* gradually becomes weaker when we move from tight (left) to loose constraints

(right) in both median and mean slowdown factors. There is one potential reason for this pattern. WC-EBBA*’s prelim-

inary heuristics are more informed than those of WC-BA* due to sequential heuristic searches. Therefore, WC-EBBA*

prunes more nodes and performs faster in very tight constraints. In loose constraints, however, the sequential searches (in

both initialization and the constrained search) become the lengthy part of WC-EBBA* and lead to increasing the runtime.

• WC-EBBA*par: This algorithm can be seen as the best performer across the 40%–80% range. It also shows the best

average factor in the 50%–80% tightness range. Compared to its standard version WC-EBBA*, the parallel variant signif-

icantly improves the runtime and worst-case performance (maximum factors) on almost all levels of tightness, especially

in loose constraints. This is mainly because of faster initialization via parallelism. However, WC-EBBA*par is slightly

weaker than its sequential version in the 10% constraint, mainly because its heuristic functions are not as informed as

those of WC-EBBA* with sequential searches. Having compared WC-EBBA*par with the other parallel search algorithm

WC-BA*, we can see that WC-EBBA*par outperforms WC-BA* in loosely constrained instances (the 40%–80% range),

whereas WC-BA* performs better on average in the 10%–30% range. A potential reason for this behavior is that, unlike

WC-BA* where its backward search has limited impact on reducing the search space in loose constraints, bidirectional

searches of WC-EBBA*par work in the same objective ordering, and thus they actively contribute to reducing the (already

small) search space.

Summary: WC-EBBA* is a good candidate for very tight constraints, as it benefits from more informed heuristics via

sequential preliminary searches. WC-BA* can be seen as a great candidate for tightly constrained problem instances. Its back-

ward search is very effective in reducing the search space in such cases. WC-EBBA*par works very well on loosely constrained

problems, mainly because its bidirectional searches are both capable of reducing the search space. Finally, WC-A* can be seen as

a good candidate for very loose constraints where the search space is already small and does not need better informed heuristics.

A different observation: We focus on the performance of WC-A* and WC-EBBA*. Thomas et al. reported that the unidi-

rectional forward A* search is less effective than the bidirectional search of RC-BDA* on the WCSPP instances of Santos et al.

[28]. In their paper, the forward A* search is reportedly 20 times slower than RC-BDA* on average. It is also outperformed

by RC-BDA* in all tested levels of tightness. They concluded that the bidirectional nature of RC-BDA* plays a critical role in

RC-BDA*’s success. Given WC-EBBA* as the enhanced weight constrained version of RC-BDA*, if we assume our WC-A* is

a unidirectional variant of WC-EBBA*, the experimental results in Figure 4 show that the bidirectional search does not always

yield smaller runtimes. As we discussed above, there are cases in which unidirectional WC-A* delivers outstanding perfor-

mance (in both median and mean runtimes) compared to the bidirectional WC-EBBA* (in the 60%–80% range). However, we

can confirm that the unidirectional variant is still dominated by the bidirectional variant in tight constraints.

7.3 On the importance of initialization
In order to investigate the significance of preliminary searches in the initialization phase of our non-parallel algorithms WC-A*

and WC-EBBA*, we implemented a version of these two algorithms where the order of preliminary searches is changed to:

(1) Run standard A* on cost
2

to obtain an initial upper bound on cost
1

and initialize f1.

(2) Run bounded A* on cost
1

using the upper bound obtained in the previous step.

(3) Run bounded A* on cost
2

using the weight limit as the upper bound, and only using the states expanded in the previous

step.

In this ordering, the bounded search on cost
2

is done in the last step. Note that WC-EBBA* requires steps (2) and (3) above

to be done in both directions. Moreover, the bounded search of step (3), in one direction, can be seen as a continuation of

step (1). With this extension, we aim to analyse the performance of both WC-A* and WC-EBBA* algorithms with heuristic

functions of different qualities. For this analysis, we evaluate both variants of the algorithms on all of our benchmark instances.

We perform three runs of each variant and store the run showing the median runtime, and then calculate the speedup factors

achieved by using the new variant. The speedup factor is larger than one if the new variant runs faster (with smaller runtime)

than the standard version. We have 250 instances in each level of tightness, and unsolved cases are considered to have a runtime

of one hour. Figure 5 shows the distribution of speedup factors achieved across all levels of tightness with respect to the standard

variants.
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AHMADI ET AL. 25

FIGURE 5 The distribution of speedup factors achieved by changing the order of preliminary searches in the initialization phase of WC-A* and WC-EBBA*

(outliers are not shown).

The results in Figure 5 highlight that WC-EBBA* is much more affected by the changes in the initialization phase than

WC-A*. Looking at the range of speedups achieved in tight constraints (the 10%–30% range), we notice that both algorithms

become weaker when we perform bounded searches on cost
1

earlier than cost
2
. In particular, the detailed results illustrate

that the new strategy can make WC-EBBA* up to six times slower in the 10% tightness level. However, based on the pattern,

the new search order (starting bounded searches with cost
1
) becomes more effective when we move from tight (left) to loose

constraints (right). More precisely, in the 40%–80% range, we see an improvement in the performance of the algorithms (via

both median and mean speedup factors) with the new search order. In the 80% tightness level, for example, we see WC-EBBA*

performing 60% better than its standard version on average. There are two potential reasons for having such a pattern. First,

the upper bound on cost
2

(the weight limit) is smaller in tight constraints, so starting with the bounded search on cost
2

would

be more effective in reducing the graph size in such constraints. Second, our heuristic function (spherical distance) is more

informed in the bounded search on cost
1

(distance) than cost
2

(time). As a result, in loose constraints with larger upper bounds

on cost
2
, we can expect that bounded search on cost

1
performs better than cost

2
in graph reduction. In terms of the best and

worst-case performances in very loose constraints (70% and 80%), we see maximum speedup factors around two and four for

WC-A* and WC-EBBA*, respectively, but maximum slowdown factors around 1.15–1.45 for both algorithms. This means that

the worst-case performance of the new variants is far less severe in loose constraints.

We can conclude that, depending on the quality of heuristics, both WC-A* and WC-EBBA* (with an admissible heuristic

on cost
1
) can benefit from the proposed (reversed) search order for their initialization phase in loosely constrained instances to

perform faster, but such a setting is less effective in tightly constrained problems. Based on this observation, we recommend

using procedures that can change the order of bounded searches in the initialization phase based on the tightness of the constraint.

7.4 Extended experiments: Tie-breaking and priority queues
We now study the significance of priority queues in constrained search with A* and show how disabling tie-breaking and using

bucket-based queues can together contribute to substantial improvement in algorithmic performance. Earlier in Section 6, we

presented two types of bucket-based queues for the WCSPP: bucket queues with linked lists, and hybrid queues with binary

heaps. For the analysis of this section, we also consider binary heaps as the conventional queuing method. Obviously, both

binary heaps and hybrid queues (with binary heaps) can order nodes with and without tie-breaking. For both bucket and hybrid

queues, we set the bucket width to be Δf = 1. Bucket queues (with linked lists), however, are not able to break the tie between

nodes in cases two nodes have the same primary cost. For this category of queues, we study LIFO and FIFO node extraction

strategies instead.

For this extended set of experiments, we choose the unidirectional search algorithm WC-A* as it offers a more stable

performance than our bidirectional algorithms in terms of runtime and the number of node expansions. For our benchmark

instances, since the objectives (distance and time) in the DIMACS road networks are highly correlated, we design a set of

randomized graphs by changing the cost
2

of the edges in the DIMCAS maps (the time attribute) with random (integer) values

in the [1, 10 000] range. We do not change instance specifications, that is, (origin, destination) pairs and the tightness values.

The new set of (randomized) graphs will help us to investigate the queuing strategies in cases where the search generates more
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26 AHMADI ET AL.

TABLE 3 Cumulative runtime of the WC-A* algorithm (in min) with different types of priority queues per map (normal weights).

Queue/map NY BAY COL FLA NW NE CAL LKS E W CTR USA

Bucket-LIFO 0.16 0.24 0.57 3.54 4.38 4.36 10.85 68.29 107.25 89.50 208.19 2025.00

Bucket-FIFO 0.16 0.25 0.59 4.01 4.82 4.81 14.55 72.82 113.27 109.36 222.44 2205.61

Hybrid w/o tie 0.16 0.26 0.64 4.24 5.28 5.22 13.87 80.88 130.08 103.65 248.62 2331.18

Hybrid w tie 0.17 0.28 0.71 5.04 6.49 6.48 16.64 114.37 174.41 146.05 313.83 2875.61

Bin-Heap w/o tie 0.21 0.37 1.06 8.43 11.25 11.24 31.87 225.36 348.82 278.86 602.25 4189.57

Bin-Heap w tie 0.21 0.38 1.07 9.09 12.00 12.63 35.62 257.55 395.29 303.87 681.50 4600.02

Note: We report total time needed to solve all cases of the instance and consider the timeout (1-h) as the runtime of unsolved cases.

TABLE 4 Cumulative runtime of the WC-A* algorithm (in min) with different types of priority queues per map (random weights).

Queue/map NY BAY COL FLA NW NE CAL LKS E W CTR USA

Bucket-LIFO 0.46 0.39 1.51 44.61 13.13 41.75 46.98 763.38 324.08 683.44 2800.15 6476.14

Bucket-FIFO 0.49 0.42 1.54 42.45 13.86 44.63 46.05 757.41 328.41 693.51 2807.20 6557.63

Hybrid w/o tie 0.52 0.43 1.73 49.18 16.46 47.63 54.44 873.85 377.23 759.35 2953.02 6685.09

Hybrid w tie 0.63 0.48 2.09 65.48 20.41 68.16 69.86 1174.14 529.29 1067.34 3194.13 7138.32

Bin-Heap w/o tie 0.94 0.66 3.40 127.65 37.91 137.14 130.24 1724.87 929.88 1761.51 3666.08 7951.32

Bin-Heap w tie 1.03 0.69 3.51 132.23 37.36 150.44 133.88 1870.27 1050.45 1894.05 3837.63 8217.28

Note: We report total time needed to solve all cases of the instance and consider the timeout (1-h) as the runtime of unsolved cases.

non-dominated nodes with random costs. We ran all experiments on the machine described earlier in the section and with a

one-hour timeout (the runtime of unsolved cases). The runtimes we report for this extended experiment are the median of three

runs for each instance. We present the cumulative runtime of WC-A* with all types of studied priority queues over the instances

of each map in Table 3 for the original DIMACS networks and in Table 4 for the DIMACS graphs with random weights.

Tie-breaking impact: Comparing the performance of WC-A* in Tables 3 and 4 in both settings, that is, with and without

tie-breaking, we can see that the algorithm performs better if we simply do not break ties in the hybrid and binary heap priority

queues. For the one-level bucket queue with linked lists, the results show that WC-A* with the LIFO strategy outperforms

WC-A* with the FIFO strategy in almost all maps. There is one potential reason for this observation. In the LIFO strategy,

recent insertions (in each bucket) appear earlier in the queue. Since recent insertions are normally more informed than earlier

insertions, the search potentially prunes more dominated nodes in the LIFO strategy. Interestingly, the detailed results show that

WC-A* with worst-case tie-breaking (in bucket-queue with the FIFO strategy) leads to up to 100% extra expansions but still

runs faster than the variant with tie-breaking (hybrid queue and binary heap with tie-breaking). Further, hybrid queues without

tie-breaking are not as effective as bucket queues with linked lists, mainly due to overheads in the two-level bucket-heap data

structure. We have provided more detailed analyses on the impacts of tie-breaking in SM. 5.4.

Queue type impact: Comparing the performance of WC-A* based on the priority queues in Tables 3 and 4, we see that

bucket queues are consistently faster than the other queue types across all maps, whereas the hybrid queues are ranked second

in the head-to-head comparison between the three priority queue types in both tables. Nonetheless, WC-A* with the hybrid

queue is still significantly faster than WC-A* with the conventional binary heap queue. In particular, even the hybrid queue

with tie-breaking shows better cumulative runtimes than the binary heap without tie-breaking. This observation highlights the

effectiveness of using bucket-based queues in the exhaustive search of WC-A*.

Memory: We did not observe any significant difference in the memory usage of WC-A* with the three queue types, as they

normally contain nearly the same number of nodes over the course of the search. Nonetheless, hybrid queues can be seen as

slightly more efficient than binary heap queues in terms of memory use, as the low-level binary heap in the hybrid queue handles

a portion of the total nodes and thus is less likely to grow into a big list that contains all nodes (as in conventional binary heaps).

Bucket width impacts: For our last experiment in this article, we study the impact of the bucket width on the search

performance. In particular, we are interested in cases where buckets are required to order nodes based on their primary cost, as

in problem instances with non-integer costs via hybrid queues. To this end, we evaluated the performance of WC-A* on both

realistic and randomized graphs using bucket widths Δf ∈ {10,100, 1000} in the hybrid queue, with and without tie-breaking.

Figure 6 shows the results for the given (increased) bucket widths, along with the two extreme cases Δf = 1 and Δf = ∞ (i.e.,

binary heap). To better see the difference between the plots, we do not show the first 500 instances.

We can see from the results in Figure 6 that increasing the bucket width adversely affects the algorithmic performance of

WC-A* on both graph types. In both variants (with and without tie-breaking), WC-A* solves fewer instances if we increase the
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AHMADI ET AL. 27

FIGURE 6 Cactus plots of WC-A*’s performance with hybrid queues of different widths with and without tie-breaking on the original DIMACS graphs

(left) and randomized graphs (right). The first 500 easy instances are not shown.

bucket width to 10, 100, or 1000. The pattern also shows that WC-A*’s performance with the hybrid queue becomes closer to

that of the binary heap queue if we further increase the bucket width Δf . A potential reason for this behavior is related to the

number of nodes in each bucket of the hybrid queue. Increasing the bucket width means covering a larger range of fp-values, and

consequently, dealing with more nodes in each bucket. As a result, high-level buckets become more populated and the low-level

binary heap operations would take longer.

8 CONCLUSION AND FUTURE WORK

This article presented two new solution approaches to the hard WCSPP: WC-A* and WC-EBBA*par. WC-A* is a unidirectional

algorithm derived from the techniques used in recent bi-objective search algorithms BOA* and BOBA*. Our second algorithm,

WC-EBBA*par, is the extended version of the state-of-the-art bidirectional constrained search algorithm WC-EBBA*, enhanced

with parallelism. We evaluated our WCSPP algorithms WC-A* and WC-EBBA*par on very large graphs through a set of 2000

realistic instances and compared their performance against six recent WCSPP algorithms in the literature, namely CSP [29], the

award-winning algorithms BiPulse [8] and RC-BDA* [32], and our recent algorithms WC-EBBA* [5] and WC-BA* [4]. The

results show that the new A*-based algorithms of this article are effective in improving the runtime over the state-of-the-art

algorithms. In particular, they both outperform BiPulse in almost all instances by showing up to two orders of magnitude faster

runtime on average. We summarize the strengths and weaknesses of each algorithm as follows.
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28 AHMADI ET AL.

• WC-A*: Very fast on loose constraints and excellent in memory efficiency. This algorithm uses a unidirectional search

strategy and can be considered an effective solution approach for problems that cannot be solved bidirectionally. WC-A*

outperforms the state-of-the-art WC-EBBA* algorithm on problems with relatively small search space. In addition, it is

very space efficient and consumes up to three times less memory than the other studied algorithms. However, compared

to bidirectional algorithms, it performs poorly on tightly constrained instances and shows more critical worst cases.

• WC-EBBA*par: Very fast on almost all levels of tightness. This algorithm can be a great choice for applications that need

fast solution approaches. WC-EBBA*par considerably improves the standard version WC-EBBA* in both runtime and

worst-case performance, especially in instances with non-tight constraints, and solves more instances in a limited time

than its fast competitors. However, it shows the worst performance in terms of memory usage among the other A*-based

algorithms due to its space-demanding path-matching procedure.

We also investigated the importance of the initialization phase in the performance of constrained search with A*. By chang-

ing the order of preliminary heuristic searches, we realized that prioritizing the attribute with more informed heuristic can con-

tribute to performing several factors faster in a specific range of constraints, but likely slower in the remaining tightness levels.

Therefore, a better initialization procedure can be the one that decides search ordering based on the tightness of the constraint.

Furthermore, we studied two main components of the constrained search with A*: priority queue and lexicographical order-

ing (tie-breaking). We showed via extensive experiments on realistic and randomized graphs that bi-criteria A* algorithms

with lazy dominance procedures can take advantage of bucket-based queues to expedite the queue operations. In addition, we

empirically proved that although lexicographical ordering of search objects in the priority queue is generally supposed to be a

standard method for node expansion in the literature, we can achieve far better runtimes if we just order search objects based on

their primary cost (without tie-breaking). The results of our experiments on large graphs show that the priority queues’ effort

in breaking ties among search objects in the queue is not paid off by delivering smaller runtimes, as the tie-breaking overhead

is normally far higher than the number of pruned objects via tie-breaking. We also studied the impact of bucket width on search

performance and observed that, regardless of tie-breaking, hybrid queues with sparsely distributed nodes (via smaller bucket

widths) can be more effective than hybrid queues with fewer but (densely) populated buckets.

Future work: We already observed that improving the quality of search heuristics can potentially lead to faster runtime

for WC-A* and WC-EBBA* in loose constraints. An interesting direction for future work can be applying the graph reduction

technique of branch-and-bound methods to the initialization phase of our A*-based algorithms. For example, we can run several

rounds of forward-backward bounded search to remove more nodes from the graph and obtain better quality heuristics for the

main search. We currently limit the number of preliminary heuristic searches to at most two rounds. As a further optimization, we

can improve the bidirectional heuristics of WC-EBBA* and WC-EBBA*par during the search, like heuristic tuning in WC-BA*.

However, as both searches of these algorithms are conducted on the same objective ordering, we can improve primary lower

bounds instead. In such a setting, we need to make sure that the consistency requirement of the A* heuristic function is still

satisfied.
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