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Abstract

Weight constrained path finding, known as a challenging vari-
ant of the classic shortest path problem, aims to plan cost
optimum paths whose weight/resource usage is limited by
a side constraint. Given the bi-criteria nature of the prob-
lem (i.e., the presence of cost and weight), solutions to the
Weight Constrained Shortest Path Problem (WCSPP) have
some properties in common with bi-objective search. This
paper leverages the state-of-the-art bi-objective search algo-
rithm BOBA* and presents WC-BA*, an exact A*-based
WCSPP method that explores the search space in different
objective orderings bidirectionally. We also enrich WC-BA*
with two novel heuristic tuning approaches that can signifi-
cantly reduce the number of node expansions in the exhaus-
tive search of A*. The results of our experiments on a large
set of realistic problem instances show that our new algorithm
solves all instances and outperforms the state-of-the-art WC-
SPP algorithms in various scenarios.

Introduction

The Weight Constrained Shortest Path Problem (WCSPP) is
well known as a technically challenging variant of the clas-
sical shortest path problem. The objective in the point-to-
point WCSPP is to find a minimum-cost (shortest) path be-
tween two points in a graph such that the total weight (or re-
source consumption) of the path is limited. The WCSPP, as a
core problem or a subroutine in larger problems, can be seen
in various real-world applications in diverse areas such as
transportation, robotics and game development. Typical ex-
amples can be route planning for bicycles where height dif-
ference between end points is to be limited (Storandt 2012),
or solving the WCSPP as a sub-problem in the context of
column generation (Zhu and Wilhelm 2012) or vehicle rout-
ing problems (Ahmadi et al. 2021b). The problem has been
shown to be NP-complete (Handler and Zang 1980).
Constrained path finding is a difficult task, technically
more difficult than the classic single-objective shortest path
problem. This is because the search space becomes larger
when exploring two (or more) dimensions and the search
may have to deal with a significant number of paths even
after rigorous pruning of unpromising ones. The WCSPP
and its extended version with more than one side constraint,
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known as the Resource Constrained Shortest Path Problem
(RCSPP), are well-studied topics in Al. Pugliese and Guer-
riero (2013) presented a summary of traditional exact so-
lution approaches to the WCSPP and RCSPP by classify-
ing them into three categories: path ranking, dynamic pro-
gramming and branch-and-bound (B&B) approaches. Look-
ing into the solution methods presented for constrained path
finding over the last decade, we can still find effective
methods from each category of solutions. Sedefio-Noda and
Alonso-Rodriguez (2015) developed an enhanced path rank-
ing approach called CSP, which was able to exploit prun-
ing strategies of the B&B-like Pulse algorithm in (Lozano
and Medaglia 2013). Thomas, Calogiuri, and Hewitt (2019)
presented a dynamic programming approach to solve the
RCSPP using bidirectional A* search. In their RC-BDA*
algorithm, the resource budget is equally divided between
the forward and backward searches, allowing the searches
to meet at 50% resource half-way points. They evaluated
RC-BDA* on some of the instances of Sedefio-Noda and
Alonso-Rodriguez (2015) for the WCSPP and reported 99%
of the total instances solved within five hours. Cabrera et al.
(2020) developed a parallel framework to execute Pulse of
Lozano and Medaglia (2013) bidirectionally. To prevent the
search falling into unpromising deep branches, bidirectional
Pulse (BiPulse) limits the depth of the Pulse search and em-
ploys an adapted form of the queuing strategy proposed by
Bolivar, Lozano, and Medaglia (2014). Their results show
that BiPulse delivers better performance than both Pulse and
RC-BDA* on medium-size instances, while leaving 3% of
the instances unsolved after four hours of runtime. More re-
cently, we improved RC-BDA* of Thomas, Calogiuri, and
Hewitt (2019) for the WCSPP in (Ahmadi et al. 2021c¢) and
proposed a dynamic programming framework called WC-
EBBA¥* that can solve all instances of Sedefo-Noda and
Alonso-Rodriguez (2015) within 10 minutes. In contrast to
RC-BDA*, WC-EBBA* allows the search frontiers to meet
at any fraction of the resource budget (not just at the 50%
half-way point).

Given the success of A* in more effectively address-
ing difficult WCSPP instances, there are still some chal-
lenges that require attention if bidirectional A* is being
used. Recent A*-based WCSPP methods (RC-BDA* and
WC-EBBA*) work based on the traditional bidirectional
search scheme where both searches explore the search space



in the same objective ordering (cost as the primary objective
and weight for pruning) so that storing and joining partial
paths are necessary to achieve the optimal path, which is
known as collision of search frontiers. The frontier collision
in such algorithms is space and time demanding as the num-
ber of paths grows exponentially. Further, there is a limited
opportunity for improving the quality of heuristic functions
used in such methods as both searches are working on the
same dimension.

To address the shortcomings above, this paper leverages
one of the recent time and space efficient bi-objective search
algorithms in the literature and presents a new A*-based so-
lution to the WCSPP called WC-BA*. Our WC-BA* algo-
rithm avoids frontier collision by running individual (bidi-
rectional) searches in different objective orderings. There
are two main advantages: (i) the search can become more
memory-efficient, as maintaining partial paths is no longer
a necessity; (ii) the search space can shrink faster, as each
search can improve the lower bounds for the other. We then
enrich WC-BA* with two new heuristic tuning methods and
empirically evaluate its algorithmic performance against the
state of the art. The results show that our new algorithm
is very effective in reducing the computation time of con-
strained search with A* in various scenarios. As our second
contribution, we design a new set of 2000 challenging WC-
SPP instances, some of which require substantial computa-
tion time with the current technologies.

Problem Definition and Notation

Consider a directed graph G = (S, F) with a finite set
of states S and a set of edges £ C S x S. Every edge
e € FE has two non-negative attributes that can be ac-
cessed via the cost function cost : E — RT x RT.
For the sake of simplicity in our algorithmic description,
we replace the conventional (cost, weight) attribute repre-
sentation with (cost;, costg). Further, in our notation, ev-
ery boldface function returns a tuple, so for the edge cost
function we have cost = (cost;, costg). A path is a se-
quence of states u; € S with ¢ € {1,...,n}. The cost
of path 1 = {uy,us,us,...,u,} is then the sum of cor-
responding attributes on all the edges constituting the path,
namely cost(m) = Z;:ll cost(u;, u;+1). The Weight Con-
strained Shortest Path Problem (WCSPP) aims to find a
costy-optimal path from start € S to goal € S such that
the coste of the optimum path is within the weight limit WW.

We follow the standard notation in the heuristic search lit-
erature and define our search objects to be nodes (equivalent
to partial paths). A node z is a tuple that contains the main
information of the partial path to state s(x) € S. Node x tra-
ditionally stores a value pair g(«) which measures the cost
of a concrete path from an initial state to state s(z), a value
pair f(z) which is an estimate of the cost of a complete path
from start to goal via s(x); and also a reference parent(x)
which indicates the parent node of x.

We define two global upper bounds for the search, namely
f = (f1, f2). f2 is the global upper bound on costy of paths
and can be initialised with the weight limit WW. However, the
initial value of f; is not known beforehand and is updated

during the search. We now describe the validity conditions.
Definition A path/node/state z is valid if its estimated costs
f(x) are within the search global upper bounds (f1, f2), i.e.,
z is invalid if fi(z) > f1 or fo(z) > fo. In addition, path
is costp-valid if cost, (m) < f, forp =1,2.

We consider all operations of the boldface costs to be done
element-wise. We also use (<, =) or (=<, >) symbols in di-
rect comparisons of boldface values, e.g. g(z) < g(y) de-
notes g1(z) < ¢1(y) and g2(x) < g2(y). In our notation,
we generalise both possible search directions by searching
in direction d € {forward, backward} from an initial state
to a target state. Therefore, the (initial, target) pair would be
(start, goal) in the forward search and (goal, start) in the
backward search. In addition, we define d’ to always be the
opposite direction of d. To keep our notation consistent in
the bidirectional setting, we always use the reversed graph or
Reversed(G) if we search backwards. We now define dom-
inance over nodes generated in the same search direction.
Definition For every pair of nodes (z,y) associated with
the same state s(z) = s(y), we say node y is dominated by
z if we have g1(z) < ¢1(y) and ga(z) < ga2(y) or if we
have g1(x) < g1(y) and g>(x) < go(y). Node o weakly
dominates y if g(x) < g(y).

Bidirectional Constrained A* Search

This section investigates the relationship between the Bi-
Objective Shortest Path Problem (BOSPP) and the WCSPP.
BOSPP methods aim to find a representative set of Pareto-
optimal solution paths, i.e., a set in which every individual
(non-dominated) solution offers a path that minimises the bi-
objetive problem in both cost; and costy (Miettinen 1998).
In the WCSPP, however, there is only one cost-optimal solu-
tion path. Figure 1 depicts the relationship between a sample
set of Pareto-optimal solutions (nodes in black, grey and red)
and a cost-optimal solution of the WCSPP within the weight
limit f5 (the red node marked Sol). As we see in the figure,
Sol can be retrieved from the BOSPP solutions.

In this section, we consider our bidirectional bi-objective
search algorithm BOBA* (Ahmadi et al. 2021a). BOBA*
employs two bi-objective A* searches (Ulloa et al. 2020) to
explore the graph in both forward and backward directions
in the (f1, f2) and (f2, f1) order respectively, and grows
two subsets of cost-unique Pareto-optimal solutions concur-
rently. From the WCSPP’s point of view, if a cost-optimal
solution path exists, it will always be in one of the subsets
of BOBA*. Figure 1 highlights that Sol can be reached via
two possible objective orderings: Sol is the first valid solu-
tion in the (f1, f2) order, whereas it is the last valid solution
in the (f2, f1) order. With this introduction, we now discuss
how BOBA* can be adapted for the WCSPP, namely by in-
troducing its weight constrained variant WC-BA*.

Constrained Path Finding with WC-BA*

Our constrained A* search in direction d is guided by the
start-goal cost estimates or f-values, which are traditionally
established based on a consistent and admissible heuristic
function h? : § — RT x R (Hart, Nilsson, and Raphael
1968). In other words, for every search node x generated
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Figure 1: Schematic of a sample Pareto-optimal solution set
(black, grey and red nodes) and also a solution Sol in the set
(the red node) with the optimal cost pair of (f1,f5°) for the
WCSPP with the weight limit f,. Nodes in grey are out-of-
bounds for the WCSPP. h and ub-values are the lower and
upper bounds on the cost of the initial state u; respectively.

Algorithm 1: WC-BA* High-level

Input: The problem instance (G, cost, start, goal, W)
Output: A node corresponding with the cost-optimal
_ feasible solution Sol

1 h,ub, f + Initialise(G, cost, start, goal, W) > Alg. 2
2 Sol +— @
3 do in parallel
4 Run a WC-BA* search on (G, cost, start, goal) in the
forward direction and (f1, f2) order with global upper
bounds f, heuristic functions (h, ub) and initial
solution Sol. Terminate the parallel search after the
current search is complete. > Alg. 3
5 Run a WC-BA* search on (Rev(G), cost, goal, start)
in the backward direction and (f2, f1) order with
global upper bounds f, heuristic functions (h, ub)
and initial solution Sol. Terminate the parallel search
after the current search is complete. > Alg. 3

6 return Sol

in direction d we have f(z) = g(z) + h?(s(z)) where
h?(s(x)) estimates lower bounds on the cost of paths from
state s(z) to the target state of direction d. The heuristic
function h? can be established by conducting two simple
unidirectional single-objective searches from target in the re-
verse direction d’. These unidirectional searches can also es-
tablish a set of upper bound functions ub? : § — R+ x R*.
For every state u € S, ubd(u) denotes the upper bounds on
cost of paths from state u to the target state in the search di-
rection d, or equivalently, the upper bound on cost of paths
from the initial state to state u in direction d’.

We now describe WC-BA*, the weight constrained search
algorithm adapted from our bi-objective search algorithm
BOBA* (Ahmadi et al. 2021a). WC-BA* is a bidirectional
search algorithm that explores the search space in both ob-
jective orderings concurrently. Algorithm 1 shows the high-
level design of WC-BA*. We follow BOBA*’s framework
and propose a two-phase search, with parallel searches in

Algorithm 2: Initialisation Phase of WC-BA*

Input: The problem instance (G, cost, start, goal, W)
Output: Functions h and ub and global upper bounds £
1 Initialise global upper bounds: fi < oo and fz «+ W
2 do in parallel
3 h£ , ub{ < Run f>-bounded backward A* on costs
(using an admissible heuristic), update f1 with
ub{ (start) when start is going to get expanded and
stop before expanding a state with f> > fo.
4 hb, ub% < Run fi-bounded forward A* on cost,
(using an admissible heuristic) and stop before
expanding a state with f1 > fi.

5 do in parallel

6 h8, ub < Run fa-bounded forward A* on costsa

(using hg as an admissible heuristic), ignore

unexplored states in the previous round (lines 3-4),

update f; via paths matching if feasible and stop

before expanding a state with fo > fa.

7 h{, ubl < Run f;-bounded backward A* on cost;
(using h% an admissible heuristic), ignore unexplored
states in the previous round (lines 3-4), update f; via
paths matching if feasible and stop before expanding
a state with f; > fi.

s return (h/ h®), (ub’ ub®), f

each phase. In the first phase, the algorithm establishes two
sets of heuristic functions in both directions. It then ini-
tialises a solution node Sol and starts the second phase by
running two parallel constrained searches in in different ob-
jective orderings. WC-BA* terminates as soon as one of the
searches is complete. We explain each phase as follows.

Initialisation: Algorithm 2 shows the first phase of WC-
BA* in two rounds in detail. The first round runs an f;-
bounded forward search and, in parallel, an fy-bounded
backward search to establish hg and hY respectively. This
round includes initialising the global upper bound f; using
the costg-optimum path. Both searches have direct access to
shared parameters, so the forward A* search on cost; will
turn into a bounded search as soon as f; gets updated by
the concurrent backward search. The second round runs two
complementary cost-bounded A* searches in parallel while
benefiting from the lower bounds hg and hY obtained in the
previous round as informed heuristics. The second round
also performs two additional tasks: (i) it only explores the
expanded states of round one, i.e., it disregards states al-
ready identified as out-of-bounds; (ii) it tries to update the
global upper bound f; by matching partial paths with their
complementary optimum paths obtained via the first round.

Constrained Search: WC-BA* executes two concurrent
constrained searches for its second phase. Following the
search structure of BOBA*, we run one forward con-
strained A* search in the (fy, fo) order, and simultane-
ously, one backward constrained A* search in the (f2, f1)
order, as shown in Algorithm 1. Both searches communi-



Algorithm 3: Constrained Search of WC-BA*

Input: Problem (G, cost, u;, u;), search directiond,
objective ordering ( f», fs), global upper bounds f,
heuristics (h, ub), and an initial solution Sol

Output: A node corresponding to an optimal solution

Open? <

g in(u) < oo foreachu € S

x < new node with s(x) = u;

g(x)  (0,0) . f(z) ¢ (hi(ui), hS(us))

parent(z) < &

Add z to Open?

d' + opposite direction of d

while Open? # 0 do

Remove from Open? node = with the

lexicographically smallest (fp, fs) values

1 | if fy(x) > f, then break

1 if fs(x) > f; then continue

12 if gs(z) > ghin(s(z)) then continue

13 if g%, (s(x)) = co then

i | LBy (s(@) ¢ gp(@)

15 | gmin(s(2)) + gs(2)

16 HTL/HTA(z, d,d’) > Procedure 4/5
17 if g () + ub?(s(z)) < fs then

o I T I OV ST

18 if d= forward then f, < fp(x)

19 else [, < g.(x) + ubl(s(x))

20 | Sol + =z

21 if h(s(x)) = ubl(s(x)) then continue
2 for all v € Suce(s(z)) do

23 y < new node with s(y) = v

u g(y) < g(@) + cost(s(z),v)

2 f(y) « g(y) +h(v)

26 parent(y) + x

2 if g5 (y) > g&in(v) then continue
28 if g(y) £ ub? (v) then continue
29 if f(y) # f then continue

30 | Addyto Open?

31 return Sol

cate with each other and have access to shared parameters
of the search including the heuristic functions, global up-
per bounds, and best known solution. We abstract from the
two possible attribute orderings (1, 2) and (2, 1) in our nota-
tion by using a pair (p, s) (for primary and secondary) with
p,s € {1,2} and p # s. Algorithm 3 presents the con-
strained search of WC-BA* in the generic (f,, fs) order.

Algorithm Description: Consider Algorithm 3 for a for-
ward search in the (fi, fo) order. The algorithm first ini-
tialises essential data structures needed by the search, in-
cluding the priority queue Open’ and a search node associ-
ated with the start state. The algorithm also initialises for
every u € S the scalar gfm.n(u), a parameter that will keep
track of the secondary cost of the last node successfully ex-
panded for state u during the search in the forward direction,
as in bi-objective A* (Ulloa et al. 2020). To be able to com-

municate with the concurrent search, the algorithm then sets
d’ to be the opposite direction backward. In every iteration of
the forward search, the algorithm extracts the lexicographi-
cally smallest node from Openf in the (f1, f2) order. Let
the extracted node be x. The search can terminate early if
f1(z) is out-of-bounds. This is because A* guarantees that
all future forward expansions will show a primary cost no
smaller than f; (z) and will similarly not lead to a valid so-
lution path. Otherwise, if f1(x) < fi, there is still a chance
for x to be an invalid node if it violates the global upper
bound f>. In this case, = will be pruned via line 11.

Let = be a valid node in the forward search. In the next
step, x is tested for dominance via line 12. The search com-
pares x with the last node successfully expanded for state
s(x) in the forward direction. Since our forward A* explores
nodes in the non-decreasing order of their f;-values, we can
observe that nodes expanded for s(z) are also ordered based
on their g;-values. Therefore, if we keep track of the go-
value of the last expanded node for s(z) via g{mn(s(x)),
we can guarantee that node z is a weakly dominated node
if go(z) > gfnm(s(o:)). Thus, x can be safely pruned. Oth-
erwise, x is a non-dominated node and we can capture its
secondary cost go(x) via line 15. But before that, WC-BA*
undertakes a strategy called Heuristic Tuning with First ex-
pansion (HTF) in lines 13-14 of Algorithm 3. HTF aims to
improve the (secondary) heuristic function of the opposite
direction upon the first expansion of the state, here i (s(x)).

For the valid node z, if gfm-n (s(x)) = oo, it means that there
has not been any (successful) node expansion for s(z) yet
and x will represent the first valid path from start to s(x).
Since the forward search explores nodes based on their f;-
value, A* guarantees that there would not be any valid path
from start to s(x) with a better cost; than g1 (z). Hence, it
is always safe to use this shortest path to update heuristics
of the opposite direction, in our case via h%(s(z)) <+ g1(z).

In the next step (line 17), the forward A* search tries to
obtain a tentative solution by matching = with its comple-
mentary shortest path. Following the Early Solution Update
(ESU) strategy in BOBA*, we join node = with the comple-
mentary shortest path on cost,. The cost of this joined path
is (f1(x), f5) where f3 = go(x) + ub}(s(x)). Since z is
already a valid node, we know that f;(z) < f;. Therefore,
the joined path is a tentative solution path if f§ < f5. In this
case, the algorithm updates Sol with = and also the global
upper bound f; with cost; of the joined path (fi(z) in the
forward search and f] in the backward search). In the next
step (line 21), the search skips expanding « if it is a terminal
node, i.e., if we have h{(s(x)) = ub{(s(az)) This is because
terminal nodes offer one complementary path which is opti-
mum for both costs. Therefore, by joining = with such com-
plementary shortest path we have f(x) = g1 () +h{(3(m))
and f§ = go(z) + ubg(s(x)) = fao(x). Since z is a valid
node and has not been pruned by the global upper bounds,
we can conclude that fi(z) < f; and fo(x) < fo, which
yields f5 < fa. Therefore,  is a tentative solution node and
has already been captured by ESU.



Figure 2: An example graph with four non-dominated paths
to state v in each direction. Paths shown with dashed lines
are future expansions. Given the global upper bound f; =
10, we can update h%(u) < 6 after expanding the second
path of u in the backward direction (shown in blue). Tuples
on the paths show (cost;, costs).

If x is not a terminal node, the algorithm extends z via
the successor function Succ(s(x)) while performing validity
and dominance tests via lines 23-30. If the extended path is
valid, and if it is not weakly dominated by the last expanded
node of the corresponding successor state, it will be added
to Openf for further expansions. Finally, the forward search
terminates if there is no node in Open’ to explore.

New Heuristic Tuning Methods

We now describe our two new heuristic tuning methods for
WC-BA*. These methods use previously expanded paths of
states to improve secondary lower bounds. Our first new
method HTA exploits all expanded paths whereas the second
method HTL only uses the last expanded path. We explain
these methods using an example.

Example: Figure 2 shows four non-dominated paths to
state v in each direction. Forward (resp. backward) paths are
ordered based on cost; (resp. costz). Assume WC-BA* has
already expanded two paths in the forward direction (shown
in solid red) and one path in the backward direction (shown
in solid black) for state u. Paths shown with dashed lines are
next (potential) expansions. In addition, after the first expan-
sion of u in the forward direction, we have set h8 (u) = 2 via
HTF. We now want to expand the second backward path of u
(shown in blue with costs (7, 4)) where fo = 10.

The HTA method tries to match the backward path with all
forward complementary paths reaching u. Here we have two
paths and thus the actual costs of the joined paths will be
(9,13) and (12,11). The joined paths are invalid as their
costy are out-of-bounds, i.e., 13 > 10 and 11 > 10. Since
joining these two forward paths with the next backward
paths of w would also violate the global upper bound fo,
HTA picks the second forward path as the shortest feasible
path on cost; and updates hY(u) + 6 accordingly.

The HTL method matches the new backward path with the
last froward path only. Here, we can see that the joined path
is invalid because its costs is out-of-bounds. Hence, follow-
ing HTA, HTL updates u’s lower bound via h} (u) < 6.

HTA Method: Procedure 4 shows the pseudo-code of this
tuning method in WC-BA*. We define for every state u € .S
in the search direction d a list x?(u) (initially empty) that
stores expanded nodes with w in order. Let x be a valid

Procedure 4: HTA(x, d, d")

1 forall y € x* (s(x)) in order; do

2 | ge(@) + g90(y)

3 if f' > f, then

4 he(s(x)) + gs(y)
Remove y from x % (s(x))

6 else

7 L hi(s(z)) < gs(y)
8 break

9 Add z to the end of x¢(s(x))

Procedure 5: HTL(x, d, d")

1 f/ — g;ix) + g;in/m(s(x))
2 if f' > f, then
s | () © gtn(s(@))

4 Gnao(5(2)) < gp(s(2))

non-dominated node that the search aims to expand in direc-
tion d. The procedure HTA(x, d, d') tries to match x with all
nodes previously expanded in the opposite direction d’ with
state s(z) in order. These candidate nodes can be retrieved

from the node list % (s(x)). If the procedure finds a cost,-
valid joined path, it skips joining x with the remaining nodes
in x% (s(x)). Otherwise, if the joined path is not cost,-valid,
HTA updates the s(z)’s lower bound and then removes the
candidate node from x? (s(x)) since it will never be able
to produce a cost,-valid joined path. Finally, after the list
is fully scanned, or after the first cost,-valid joined path is
found, the procedure stops the list scan and then adds z to
the end of x%(s(z)) to make it available for tuning the s(x)’s
heuristic function in direction d’. Procedure 4 also shows a
case where we can further improve lower bounds with the
first cost,-valid joined path (line 6). We discuss the correct-
ness of this technique in Lemma 2.

HTL Method: Procedure 5 presents the pseudo-code of
the HTL approach. The procedure in HTL is simpler than
our first method and can be performed in constant time be-
cause we only have one candidate path. Therefore, we just
need to track for every state the cost of its last expanded
path. Since WC-BA* uses g2 to keep track of the sec-
ondary cost (gs-value) of the last expanded path of each
state, we introduce the cost array g2, .. to keep track of the
primary costs (g,-value) in direction d. For every state u € S
we can initialise g<,,, (u) to zero. The HTL(z,d, d’) proce-
dure first joins the current node x with the last expanded
node in direction d’ with state s(x). Let f’ be the primary
cost of this joined path as shown in Procedure 5. If the joined
path is not cost,-valid, the procedure updates the secondary
lower bound. In the last step, the procedure stores node x’s
primary cost g, () to keep the g<, . array updated.

We now discuss the correctness of HTA and HTL.
Lemma 1 Let x be the node just extracted from the prior-
ity queue of the WC-BA* search in direction d and in the



(fp, fs) order. Also let y be a node already expanded in di-
rection d' with s(y) = s(z) in the (fs, fp) order. gs(y) is a
lower bound on the costs of complementary paths from s(y)
to the target state in direction d if g,(x) + g,(y) > fp.
Proof We need to show that there is no valid complementary
path from s(y) to the target state with a costs-value smaller
than g,(y). We observe two cases:

(1) The primary heuristic functions always remain un-
changed during our constrained searches and thus A* in di-
rection d (with the consistent heuristic hg) always expands
nodes associated with the same state in a non-decreasing
order of their g,-values. Therefore, if we observe g,(x) +

gp(y) > f, upon extraction of z, we can guarantee that all
future expansions of s(x) in direction d would similarly sat-
isfy the inequality above if we join them with y. In other
words, neither = nor next expansions of s(x) in direction d
would yield a cost,,-valid joined path via y.
(ii) WC-BA* in direction d’ enumerates all paths to s(x) in
a non-decreasing order of their g,-value. Furthermore, since
both searches rigorously prune weakly dominated nodes, we
can also see that the gs-value of the expanded nodes with
s(x) is monotonically decreasing. Therefore, if node y in di-
rection d’ shows g, (z) + g,(y) > f,, we can guarantee that
all nodes expanded before y with s(y) would similarly show
a costp-value larger than f,, after being joined with x.
According to observations (i) and (ii) above, there does not
exist a complementary path (from s(x) to target) shorter than
the sub-path represented by y (on costs) such that it can es-
tablish a cost,-valid path between start and goal. There-
fore, we can guarantee the admissibility of our secondary
heuristic function after updating h<(u) with g,(y). O

Given our tuning methods HTA and HTL from Proce-
dures 4 and 5, we can see that the correctness of both meth-
ods is directly derived from Lemma 1.HTL only updates
the lower bound if it does not find the cost, of the joined
path within the global upper bound f,,, whereas HTA succes-
sively checks previously expanded nodes in the opposite di-
rection until it finds a cost,-valid joined path. Furthermore,
we can see that the correctness of the tuning condition does
not depend on the existence of all nodes expanded in the
opposite direction. Therefore, we can remove paths already
scanned or even keep the last k expanded paths to terminate
the likely lengthy list scan in HTA sooner.

We now prove the correctness of tuning with the first
costp-valid path shown at line 6 of Procedure 4.
Lemma 2 Assume the situation described in Lemma Iwhere
we have g,(x) + g,(y) > fp. Also suppose that z is the
first node expanded after y in direction d' with s(y) = s(z).
gs(z) is a lower bound on the costs of complementary paths
from s(z) to the target in direction d if g,(x) + g,(2) # fp-
Proof z is expanded after y, so we have g;(y) < gs(z). In
addition, the A* search in direction d’ guarantees that there
is no non-dominated node 2’ expanded with s(y) for which
we have gs(y) < ¢s(2') < gs(z). In addition, the proof
in Lemma lshows that y will never be able to establish a
costp-valid joined path with future expansions of s(y) in di-
rection d. Therefore, z represents a minimum costs compli-
mentary path that is able to establish a cost,-valid joined

path via z and thus the heuristic function h? remains admis-
sible after updating h%(u) with g,(z). O
Note that Lemma 2requires HTA to keep at least the last
two expanded nodes of each state, essentially because the
correctness of tuning via the first cost,-valid joined path de-
pends on the previous joined path being invalid. We now
show the correctness of constrained search with WC-BA*.
Theorem 1 WC-BA* returns a node corresponding to a
cost-optimal solution path for the WCSPP.
Proof WC-BA* conducts two constrained searches in par-
allel. In each search, it enumerates all paths in best-first
order and prunes dominated and invalid nodes. Dominated
and out-of-bound nodes are not part of the cost-optimum
solution path because such partial paths can always be re-
placed with a path that is shorter at least in one attribute.
In addition, we already showed how early termination, ESU
and tuning methods respectively preserve the correctness
of A*, solution update and the admissibility of heuristic
functions. Therefore, we just need to show that, if one of
the constrained searches terminates, the other search can be
stopped accordingly. This termination criterion in the high-
level structure of WC-BA* is always correct because each
individual search in WC-BA* is able find an optimal solu-
tion by itself. Therefore, when either of the searches termi-
nates, it guarantees the optimality of the solution and thus
the concurrent search can be stopped accordingly. ]

Empirical Analysis
We compare our new algorithm with the state-of-the-art so-
Iution approaches designed for the WCSPP and RCSPP.
The selected algorithms are the recent B&B method BiPulse
(Cabrera et al. 2020), the path ranking method CSP (Sedefo-
Noda and Alonso-Rodriguez 2015), and our WC-EBBA* al-
gorithm in (Ahmadi et al. 2021c).

Benchmark Setup: Given the success of WC-EBBA*
in solving all instances of the literature in under 10 min-
utes, we designed a larger benchmark set with 2000 easy-to-
hard realistic instances to evaluate our new algorithm. Fol-
lowing the literature, we use road networks in the 9th DI-
MACS Implementation Challenge (DIMACS 2005) with the
largest map (USA) containing around 24 million nodes and
57 million edges with distance and time as edge attributes
(representing cost and weight respectively). We started with
the bi-objective instances in (Sedefio-Noda and Colebrook
2019; Ahmadi et al. 2021a). We then used the competition’s
random pair generator to produce an additional set of 200
random instances for two other large maps of the DIMACS
challenge: NW and USA (100 instances each). We solved
all of the 1200 bi-objective instances and then sorted them
based on their number of Pareto-optimal solution paths as
a measure of difficulty. The number of Pareto-optimal so-
Iutions in the benchmark set ranges from 100 (in the NY
map) to 70,000 (in the USA map). Next, we evenly sam-
pled 10 easy-to-hard instances (out of 100) from each map,
plus five additional instances from the USA to further chal-
lenge the algorithms in very large graphs. Thus, in total, we
have 125 pairs over 12 maps. We then doubled the number
of instances by adding reversed pairs to account for the im-
pacts of search direction. Following the literature, we then



define the weight limit W based on the tightness of the con-
straint 6 = (W — hs)/(ubs — hg) where hy and ubs are re-
spectively lower and upper bounds on coste of start-goal
paths. In this setup, high (resp. low) values of 4 mean that
the weight limit W is loose (resp. tight). Given the tightness
levels 6 € {10%, 20%, . .., 80%}, we obtain 2000 cases.

Implementation: We implemented our WC-BA* in C++
and used the C implementation of the CSP algorithm and
also the Java implementation of the BiPulse algorithm
kindly provided to us by their authors (Sedefio-Noda and
Alonso-Rodriguez 2015; Cabrera et al. 2020). For WC-
EBBA*, we used its C++ implementation. For the sake of
fairness, we implemented our WC-BA* with the same type
of priority queue and backtracking approach used for WC-
EBBA*. All C/C++ code was compiled with O3 optimi-
sation settings using the GCC7.5 compiler. The Java code
was compiled with OpenJDK version 1.8.0.292. We ran all
experiments on an AMD EPYC 7543 processor running at
2.8 GHz and with 128 GB of RAM, under the SUSE Linux
Server 15.2 environment and with a one-hour timeout. In ad-
dition, we allocated two CPU cores to all parallel algorithms.
In order to achieve more consistent computation time, we
perform three consecutive runs of each algorithm (per in-
stance) and store the results of the run showing the median
runtime. Our codes and benchmark instances are publicly
available at https://bitbucket.org/s-ahmadi.

Performance Impact of New Tuning Methods

We first study the impacts of our tuning methods on the per-
formance of WC-BA* by evaluating three variants of the al-
gorithm. The first variant (our baseline) only employs HTF.
The second and third variants utilise the new methods HTL
and HTA on top of the HTF method respectively. For HTA,
we use dynamic arrays to store for every state only the costs
of its expanded paths during the search. Furthermore, we
trade space for time and do not resize the dynamic array af-
ter every lower bound update. Instead, we keep track of the
index of the last tested cost pair in each dynamic array us-
ing pointers. We found this around 15% faster but 20% less
memory-efficient than HTA implemented with linked-lists.
Table 1 shows the runtime and total number of node ex-
pansions for the WC-BA* algorithm with HTF (baseline)
and also for the baseline equipped with the HTA or HTL
methods on a subset of maps. According to the results, we
can see that both HTA and HTL methods have been success-
ful in reducing the number of node expansions in WC-BA*.
Comparing the average values across all maps, we observe
16-42% fewer node expansions when HTA is being used,
and also 8-27% reduction in the total number of expansions
when HTL is selected for heuristic tuning. In particular, the
maximum number of node expansions drops by 50% in the
CTR map after tuning lower bounds with HTA, reducing
152 million maximum node expansions of the baseline to 64
million expansions. We see the same pattern when compar-
ing the runtime values and both methods contribute to faster
computation time than solely using HTF. We can see WC-
BA* with HTA as the best performer of all variants, showing
up to 32% and 52% speedups (with respect to HTF) over the
maps for the average and maximum runtimes respectively.

| | Tuning |  Runtime(s) | #Expansions |
| Map | Method | Avg. Max. | Avg Max. |
CAL | HTF 1.93 23.48 | 10.5%x10° 151.8x10°
+HTL 1.60 18.79 7.7%x10° 115.0x10°
+HTA 1.54 11.31 6.1x10°  63.6x10°
W HTF 41.86 38272 | 197.5%x10° 1.5%x10°
+HTL 36.04 31835 | 167.3x10° 1.3x10°
+HTA 34.68 311.15 | 148.1x10° 1.3%x10°
CTR | HTF 79.40  636.64 | 359.8x10°  2.4x10°
+HTL 68.33  549.08 | 297.9x10° 2.0x10°
+HTA 6243  414.02 | 251.9%x10° 1.6x10°
USA | HTF 43459 3594.13 1.8x10°  13.9x10°
+HTL | 367.39 3195.64 1.5x10°  11.6x10°
+HTA | 357.12 3098.93 1.3x10°  10.3x10°

Table 1: WC-BA*’s performance using heuristic tuning.

Memory: We also compared the memory requirement of
WC-BA* over the instances before and after incorporating
the new tuning methods. The detailed results illustrate that
HTA consumes more space than HTL and HTF due to stor-
ing all paths. However, compared to the baseline, WC-BA*
consumes around 19% less memory on average when we in-
corporate the HTL method. This is potentially because HTL
contributes to fewer node expansions while only keeping
track of the costs of the last expanded path of each state via
fixed-size data structures. Therefore, we conclude that WC-
BA* can take advantage of HTL to improve both runtime
and memory requirement. Comparing the memory values
across all instances, we see that the memory consumed by
using the HTA method is around 62% larger than the mem-
ory consumption of the baseline on average. This highlights
that the runtime saved by expanding fewer nodes via HTA in
WC-BA* outweighs the time HTA needs to store and scan
all paths during the search.

Algorithmic Performance

We now compare the performance of our WC-BA* against
the state of the art. For this analysis, we consider WC-
BA* equipped with the HTA method. We also realised that
BiPulse is unable to handle our two largest maps CTR and
USA due to some inefficiencies in its graph implementation.
We report for each algorithm the number of solved cases and
runtimes. We report the timeout (one hour) as the runtime of
unsolved cases. Table 2 shows the detailed results.

Solved Cases: All of the algorithms have been able to
fully solve all instances of five maps. For the BiPulse and
CSP algorithms, however, we can see they both have been
struggling with some of the instances of the NE, LKS, E and
W maps. In the E map, for example, they cannot solve about
37% of instances within the timeout. In particular, CSP only
solves less than half of the instances of the CTR map and
just about 30% of the USA map. For the A*-based algo-
rithms WC-EBBA* and WC-BA*, we can see far better per-
formance as they both have been able to solve all instances.



| | | | Runtime(s) I | | | Runtime(s) |
| Map | Algorithm | |S| | Min Avg. Max || Map | Algorithm | |S] | Min Avg. Max |
NY WC-BA* 160 0.01 0.06 0.18 || BAY | WC-BA* 160 0.01 0.10 0.33
WC-EBBA* | 160 0.01 0.08 0.16 WC-EBBA* | 160 0.01 0.13 0.46
CSP 160 0.11 1.43 12.46 CSP 160 0.13 3.25 35.05
BiPulse 160 0.46 0.85 2.35 BiPulse 160 0.54 1.08 4.05
COL | WC-BA* 160 0.03 0.19 0.94 || FLA | WC-BA* 160 0.17 1.08 4.28
WC-EBBA* | 160 0.04 0.25 1.01 WC-EBBA* | 160 0.22 1.29 4.99
CSP 160 0.18 20.54 303.50 CSP 160 1.13 240.78  2925.19
BiPulse 160 0.73 2.85 27.46 BiPulse 160 1.47 35.29 396.44
NW | WC-BA* 160 0.10 1.87 15.25 || NE WC-BA* 160 0.15 1.96 27.50
WC-EBBA* | 160 0.13 2.11 16.20 WC-EBBA* | 160 0.21 2.67 32.00
CSP 160 0.55 390.56 3181.55 CSP 156 0.83 388.98  3600.00
BiPulse 160 1.58 163.50 1440.52 BiPulse 156 2.11 237.58  3600.00
CAL | WC-BA* 160 0.11 1.54 11.31 || LKS | WC-BA* 160 0.08 22.98 275.05
WC-EBBA* | 160 0.12 1.93 11.71 WC-EBBA* | 160 0.07 29.14 349.12
CSP 150 0.97 573.27  3600.00 CSP 104 1.39  1691.62 3600.00
BiPulse 160 2.26 154.10 2640.61 BiPulse 109 2.76  1439.84  3600.00
E WC-BA* 160 0.08 32.40 351.01 | W WC-BA* 160 0.46 34.68 311.15
WC-EBBA* | 160 0.10 43.15 418.95 WC-EBBA* | 160 0.36 40.62 367.12
CSP 102 270  1876.37 3600.00 CSP 104 3.55 1891.69 3600.00
BiPulse 99 3.66 1617.31 3600.00 BiPulse 101 7.76  1620.46  3600.00
CTR | WC-BA* 160 0.30 62.43 414.02 || USA | WC-BA* 240 0.15 357.12  3098.93
WC-EBBA* | 160 0.29 99.39 758.78 WC-EBBA* | 240 0.26 379.19  2120.83
CSP 71 | 11.29  2285.69 3600.00 CSP 67 | 14.62 2782.51 3600.00

Table 2: Number of solved cases | S| and runtime of the algorithms. Runtime of unsolved instances is assumed to be one hour.
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Figure 3: The distribution of the slowdown against the virtual best oracle in each level of tightness. Each box plot shows
minimum, first quartile (25% data), median, third quartile (75% data), mean and maximum. QOutliers are not shown.

Runtime: We report minimum, average and maximum
runtime of the algorithms in each map. Boldface values in
Table 2 denote the best runtimes. The results indicate that
the runtime of all algorithms increases with the graph size
and we have obtained larger values in larger graphs. Com-
paring the average runtime of BiPulse and CSP against the
A*-based algorithms, we see they can be up to two orders
of magnitude slower based on the average values. Among
the A*-based methods, we observe that WC-BA* outper-
forms the state-of-the-art WC-EBBA* algorithm on all maps
in terms of average runtime and in 10 maps (out of 12)
in terms of maximum runtime. In particular, WC-BA* in
the CTR map preforms approximately 60% faster than WC-

EBBA¥* based on the average runtimes, which results in sav-
ing around one hour in the total time required for solving all
CTR instances if we opt for the faster algorithm WC-BA*.
Memory: As we expected, our implementation of HTA
with dynamic arrays turned out not to be space efficient as
we did not resize path lists in HTA. However, the results
show that WC-BA* with HTL can effectively reduce the
memory requirement and shows up to 35% better memory
usage compared to WC-EBBA* on average values.
Constraint Tightness: To study the strengths and weak-
nesses of the algorithms across various levels of tightness,
we define our baseline to be the virtual best oracle, i.e., for
every instance, the virtual oracle is given the best runtime of



all algorithms. Given the virtual best oracle as the baseline,
we then calculate for every runtime (across all algorithms)
a slowdown factor, i.e, algorithms with slowdown factors
close to one are as good as the virtual best oracle. For the
sake of better readability, Figure 3 shows the range of slow-
down factors obtained for each algorithm across all levels
of tightness in two plots. We do not show outliers in the
box-plots, but the maximum slowdown for each constraint
is presented above the corresponding plot separately.

The plots show that both CSP and BiPulse perform poorly
in all levels of tightness with their median slowdown factors
ranging from one to two orders of magnitude. For CSP, in
particular, the maximum values show cases where this path
ranking approach is up to three orders of magnitude slower
than the virtual best oracle. For the A*-based approaches
WC-BA* and WC-EBBA*, however, we see far smaller
slowdown factors. Given their maximum slowdowns, we no-
tice that they are all smaller than 10 but we see relatively
larger values for WC-EBBA*. For the very tight 10% con-
straint (which can be seen as an edge case), both algorithms
behave nearly the same but we see around 1.7 times smaller
value when comparing them in terms of worst performance
(max values). On the other constraint levels, which are more
challenging and also more interesting in various practical
settings, we can focus on the range that shows the middle
50% distribution and not just the corner cases. For slow-
downs in this range, we see just up to 10% slower perfor-
mance with WC-BA*, whereas WC-EBBA* is up to 50%
slower than the virtual best oracle. Note that the most dif-
ficult WCSPP instances are normally located in the mid-
range constraints (30-50% level) where we see far larger
maximums (up to 2.5) with WC-EBBA*. This considerable
performance difference denotes the success of WC-BA* in
more efficiently solving large WCSPP instances than the ex-
isting (already fast) algorithm. In summary, WC-BA* is the
best-performing algorithm in almost all levels of tightness.

Conclusion

This paper presented a new solution approach to the Weight
Constrained Shortest Path Problem (WCSPP) called WC-
BA¥*: a bidirectional A* search algorithm derived from the
recent bi-objective search method BOBA*. WC-BA* ex-
plores the graph via different attribute orderings concur-
rently. We enriched our new algorithm with two novel
heuristic tuning methods that can reduce the significant
number of expansions in the exhaustive search of A* by
up to 50%. We evaluated WC-BA* on very large graphs
from a new set of 2000 challenging instances and compared
its performance against the recent algorithms in the litera-
ture. The results show that WC-BA* improves the runtime
over the state-of-the-art algorithms, outperforming the re-
cent fast WCSPP algorithm by up to 60% in various con-
strained problem instances.
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