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Abstract. We describe a constraint programming approach to establish
the coal carrying capacity of a large (2,670km) rail network in north-
eastern Australia. Computing the capacity of such a network is necessary
to inform infrastructure planning and investment decisions but creating
a useful model of rail operations is challenging. Analytic approaches ex-
ist but they are not very accurate. Simulation methods are common but
also complex and brittle. We present an alternative where rail capacity
is computed using a constraint-based optimisation model. Developed en-
tirely in MiniZinc, our model not only captures all dynamics of interest
but is also easily extended to explore a wide range of possible operational
and infrastructural changes. We give results from a number of such case
studies and compare against an industry-standard analytic approach.

1 Introduction

Mining is one of the most important industries in Australia, and other parts of
the world, and making mining supply chains efficient requires careful investment
in the infrastructure that makes up the supply chain. The Bowen Basin in Central
Queensland is home to 59 individual open-cut and underground mines. The large
majority of all material is export coal with over 207 million tonnes having been
produced in 2014. Once extracted, coal is railed from one of 37 different loadout
points to one of 3 nearby coal ports. The set of all rail infrastructure serving the
Bowen Basin is known as the Central Queensland Coal Network (CQCN).

Capacity planning in the context of the CQCN is an important and challeng-
ing topic. Investment decisions for infrastructure are typically highly expensive
and have an effect over many years. In order to make the right decisions we
need to model a range of competing alternatives and estimate in each case the
maximum capacity (or throughput) of the rail network, typically measured in
millions of tonnes of coal per annum (Mtpa). Key parameters that must be care-
fully considered include: the type of rolling stock, availability and performance of
mines and ports, the number of lines in the network, the number and location of
junctions and passing loops and operational constraints such as refuelling, crew
changeover and temporal separation between trains. Figure 1 gives a small arti-
ficial example of an export coal supply chain. There are two typical approaches
used to establish the capacity of rail in such a context:



Fig. 1. The export coal supply chain. Raw material is extracted from large open-cut and
underground mines. Once crushed and sorted, the coal is loaded onto trains and carried
to unload points at a waterfront terminal. There the material is blended into various
products and loaded onto ships for export. The rail component of such a supply chain
comprises the load and unload equipment, rolling stock (locomotives and wagons), the
physical rail network (lines and signals) and a set of operational parameters, in the
form of rules, that govern how the infrastructure can be used in practice.

Analytic models This approach estimates the theoretical capacity of a rail
system by creating simple mathematical models of operations that aim to
saturate available infrastructure. A common approach is to consider capacity
of a single line under e.g. fixed values for headway and travel time [3]; periodic
traffic patterns [2] or; a set of fixed variables that represent mixed traffic and
dwell times [12]. The primary advantage of these approaches is simplicity.
The chief disadvantage is accuracy.

Simulation models Simulation methods can be used to model the physical
infrastructure and the many operational requirements and constraints that
arise in practice. An overview of such methods is given in [9]. In particular,
tools such as OpenTrack [18] are intended to be very accurate but their
primary strength is checking proposed schedules for feasibility; not deciding
them in the first place. In cases where simulation models are extended to
include a scheduling component, e.g. MultiRail [17], the typical approach
is to add greedy algorithms to the simulation. The primary advantage of
this approach is that many infrastructural and operational variables can be
modeled together. The chief disadvantage is the time required to build the
simulation and the quality of the decisions made within it.

In this paper we advocate a third approach, much less frequently used: building
a CP-based optimisation model of the infrastructure system. While early ex-
amples of such works do exist (e.g. [13, 16]), they are typically limited to small
single-track networks with few junctions and trains. Alternatively one could con-
sider a mixed integer programming (MIP) based optimisation model, and there
are a number of such approaches e.g.[1, 10]. These approaches are usually quite
coarse grained, constraining capacities and using flow-based models, rather than
actually building a scheduling model since time discretization is not feasible.



This accords with experience in other minimum make span scheduling prob-
lems where CP is usually superior to MIP. We observe that recent years have
seen massive increases in computing power as well as as significant algorithmic
gains in solving complex optimisation problems. Moreover, modelling and model
transformation technology has also improved and the time required to create
an optimisation model with modern constraint programming languages is much
reduced [15]. To wit, we suggest that the time is ripe for switching to CP-based
optimisation modelling for infrastructure planning.

To support this position, and at the request of a financial-industry part-
ner with an interest in Queensland coal, we have created a scheduling-based
constraint programming model of the CQCN. The model is written entirely in
MiniZinc and offers many advantages: (i) the model describes all key infras-
tructural parameters of interest; (ii) the model considers decisions that actually
reflect the best usage of the infrastructure; (iii) the model requires substantially
less effort to produce than an equivalent simulation; (iv) the model makes it
very easy to consider many “what if” situations. Indeed in many cases setting
up such scenarios can be achieved by only changing input data.

We give a full description of the system and evaluate its performance in a
range of freight-task scenarios. We also compare our model against a standard
analytic approach to establishing rail capacity. Finally we apply the model to
a number of “what if” infrastructural scenarios in order to demonstrate the
flexibility of this approach and the benefits it can offer to industry planners.

2 The Central Queensland Coal Network

The Central Queensland Coal Network (CQCN) spans 2,670km of rail track
and is the primary means of transporting export coal volumes; from 37 regional
loadout points in Queensland’s Bowen Basin to the nearby ports of Gladstone,
Hay Point and Abbott’s Point. Owned and operated by Aurizon Pty Ltd, the
CQCN can be naturally divided into four separate but centrally managed and
connected rail systems. These are known as Blackwater, Goonyella, Moura and
Newlands. Each system imposes different constraints on train operations and
each is configured to feed coal volumes to a specific port. Table 1 gives an
overview of the four rail systems in terms of some key parameters. This data is
sourced from a range of publicly available system descriptions [5–8, 4, 3].

When attempting to establish the coal-carrying capacity of a network such
as the CQCN industry planners first create an idealised model of rail operations.
This model is used in two ways: (i) to compute a maximum throughput figure
for the as-is network and; (ii) to explore a range of what-if scenarios where
infrastructure is added or modified or in which different operational practices
are employed. The main difficulty facing industry planners is the large number
of variables that need to be modeled and accounted for. For example there are 49
separate load and unload points in the CQCN and more than 130 junctions where

3 We use as reference infrastructure equipment supplied by Techniplan to loadout
points in the Goonyella system (at Carborough Downs and Isaac Plains).



Blackwater Goonyella Moura Newlands

Track Length 1108km 978km 261km 320km
Track Type Single + Duplic’d Single + Duplic’d Single Single
# Junctions 60 41 17 18

Travel Speed 80km/h 80km/h 80km/h 80km/h
Headway Time 20min 15min 90min 36min
Shunt Speed 10km/h 10km/h 10km/h 10km/h

Train Payload (Max) 10.6Kt 13.14Kt 10.6Kt 8.7Kt
Wagon Type Hopper Hopper Hopper Hopper
Wagon Capacity 106t 106t 106t 106t
Wagon Length 16.7m 16.7m 16.7m 16.7m

Load Points 10 20 4 3
Load Rate (Avg. max)3 4Kt/hr 4Kt/hr 4Kt/hr 4Kt/hr

Unload Points 4 (Shared) 5 4 (Shared) 2
Unload Rate (Avg. max) 5Kt/h 5.5Kt/hr 5Kt/hr 5Kt/hr

Table 1. Key infrastructural parameters for the CQCN. Applicable units are Kt (kilo-
tonnes) and Kt/h (kilo-tonnes per hour). NB: When reporting number of junctions, we
count only intermediate locations (not endpoints) that appear on a mine-to-port path.

trains can be scheduled to operate. In addition there are various operational
requirements and constraints that can affect the efficacy of even idealised train
services. These include: signalling, shunting, single track, crewing, refuelling,
maintenance, and unexpected downtime.

3 Rail Capacity With Analytic Models

A common approach for analytically computing rail capacity is to combine a set
of fixed operational parameters (train length, train payload, headway and service
time4) together with simple models of relevant infrastructure. We create three
such models to respectively characterise the maximum theoretical capacity of a
single-track railway line, a mine loadout point and a port unload point:

ALine =
Total T ime

Headway T ime
× Train Payload (1)

AMine =
Total T ime

Load T ime + Shunt T ime
× Train Payload (2)

APort =
Total T ime

Unload T ime + Shunt T ime
× Train Payload (3)

4 In industry terminology, headway refers to the minimum temporal separation be-
tween two trains traveling in the same direction on the same rail line. Meanwhile,
service time is the time necessary to fully load or unload a train, including shunting.



Parameters such as load, unload and shunt time are dependent on the exact
characteristics of the train at hand and on the throughput capacity of load and
unload points. Each of these can be varied to develop different scenarios. Where
multiple parallel resources exist (e.g. duplicated rail lines or multiple loaders/un-
loaders) the models can likewise be extended appropriately. Every such analysis
is obviously limited. For example the model ALine assumes all trains are identi-
cal and always travel in the same direction. Meanwhile APort and AMine ignore
the rail line altogether. Despite these drawbacks such methods are nevertheless
attractive for their simplicity. Moreover, by computing analytic capacity from
several different perspectives useful insights can often be attained. For example
a very similar analytic approach to the one described here is currently used by
Aurizon to “support pre-concept and concept studies” (in the CQCN) [3].

4 Rail Capacity With Optimisation Modelling

In order to establish rail capacity we will build a schedule of train trips to and
from each mine. Since we are only creating a strategic model we will omit
consideration of many operational matters (e.g. fleet-size and mix, crew pairing
and rostering, variable travel times and any type of delay). We also do not
model some existing dwell times; e.g. to facilitate refuelling and crew changeover,
though these can be easily added. As such our results can be interpreted as
assuming all trains are electric and autonomous.

Our model depends on two key parameters. The first of these, loads per mine,
reflects the fact that we schedule the same number of round-trips from every mine
site. It implicitly assumes that coal production is not a limiting factor any mine
site.5 The second parameter, trains per mine, reflects the fact that we assign
a fixed number of dedicated trains to carry loads from each mine. This is not
realistic (in practice the amount of rolling stock is usually limited) but appears
quite reasonable for the purposes of infrastructural capacity estimation.

Next, rather than describe the entire rail network (which can be quite large),
we simply model track segments between key junctions. These junctions are (i)
load and unload points; (ii) rail yards where trains can be staged before/after
servicing; (iii) junctions at the intersection of two or more branch lines; (iv)
certain (hand chosen) passing loops which allow trains to share a single-track
line. We also exploit the fact that in the CQCN (as in many rail networks) there
is usually a single fixed path between each mine and the port. Every such path
is computed a priori and made available as an input parameter to the model.

Notice that the underlying problem we solve is just train scheduling. Our
model supports a variety of constraints relevant to this context including min-
imum headway time, single-track constraints and optional waiting at selected
junctions (including time allowances for stopping and starting).

5 With more data the model could be made more accurate in this regard.



4.1 MiniZinc

We now present a slightly simplified (for ease of exposition) version of our ca-
pacity planning model, written in MiniZinc [15]. The most important data are:

– a set of mines, MINE, where cargo originates.

– a set of junctions, JUNC, that split the rail network.

– the number of loads or round trips, LPM, to schedule from each mine.

– the number of trains available for each mine, TPM.

– a path, path, from each mine to the port, represented as list of at most
maxleg junctions, using a dummy junction when we need less than maxleg.

– a set of locations, LOC ⊃ MINE of things of interest.

– a mapping from junctions to locations, junc loc.

– an expected travel time from location l1 to location l2, travel time[l1, l2].

We represent the trips between mines and ports using the array TRIP. Full trips,
designated FTRIP, are assigned even indexes while empty trips, ETRIP, have odd.
We now introduce the key decision variables and discuss associated constraints.

Decision Variables: The key decisions are at the level of each mine and trip:

– mine time, decides when a train leaves (full) or arrives (empty) at each mine.

– junction time, decides when a train (full or empty) should arrive at each
junction and at the port. Note that most trips will not arrive at all junctions.

– junction wait, decides how long a train (full or empty) waits at a junction.

We measure time in minutes, though wait times are discretised to be divisi-
ble by 5. Time granularity could easily be changed in the model if required.
We additionally employ an array of convenience variables, port_time, each of
which is associated with a corresponding variable from the junction_time array.
These redundant variables simply collect the times each train arrives at the port
(full) and leaves the port (empty). Their definition makes use of a parameter,
stop allowance, which is the number of minutes required to bring the train to
a full stop, minus the usual time it would take to travel the distance of the stop.
There exists a corresponding term, start allowance, that is defined similarly
and encountered later in the model. The decision variable declarations are:

set of int: LEG = 1.. maxleg;
set of int: XJUNC = JUNC union { dummy };
array[MINE ,LEG] of XJUNC: path; % path of junctions from mine to port
set of int: TRIP = 0..2*LPM -1;
set of int: FTRIP = { 2*i | i in 0..2*LPM -1}; % full trips
set of int: ETRIP = TRIP diff FTRIP; % empty trips
array[MINE ,TRIP] of var TIME: mine_time; % time leaving/arriving mine
array[JUNC ,MINE ,TRIP] of var TIME: junction_time; % time arriving at junction
array[JUNC ,MINE ,TRIP] of var WAIT: junction_wait; % wait time at junction
array[MINE ,TRIP] of var TIME: port_time = % time arriving/leaving port

array2d(MINE ,TRIP , [ junction_time[port ,m,t] +
stop_allowance *(t in FTRIP) | m in MINE , t in TRIP ]);



Mine loading constraints: We require each full trip to be loaded and to
depart in order. The first train can leave after loading and the remaining trains
follow. After TPM departures trains can return but only in the same order.

forall(m in MINE , t in FTRIP)
(if t = 0 then % first train

mine_time[m,t] >= load_time[m] + start_allowance
elseif t div 2 < TPM then % next few trains up to TPM

mine_time[m,t] >= mine_time[m,t-2] + load_time[m] + start_allowance
+ headway_time

else
mine_time[m,t] >= max(mine_time[m,t-2], mine_time[m,t-2* TPM +1])

+ load_time[m] + start_allowance + headway_time
endif);

Port unloading constraints: We require each empty trip to depart the port
immediately after its full trip has unloaded, capturing the requirement that
trains do not remain in the port after unloading. Note that our unload time
includes a shunting component which is a function of the length of the train
(this could also be modeled separately on a per-train basis).

forall(m in MINE , t in ETRIP)
(port_time[m,t] = port_time[m,t-1] + unload_time + start_allowance);

Port capacity constraints: We ensure that no more trains are unloading at
the port than there are dump stations, unload capacity.

cumulative ([ port_time[m,t] | m in MINE , t in FTRIP],
[unload_time | m in MINE , t in FTRIP],
[ 1 | m in MINE , t in FTRIP], unload_capacity);

Unused junctions: We record a time for each trip at each junction, since
there are not that many junctions, but of course almost no trips will visit all
junctions. The unused junctions are set to have time and wait of 0.

array[MINE] of set of JUNC: junctions_for_mine =
[ {path[m,l]|l in LEG where path[m,l] != dummy} | m in MINE];

array[JUNC] of set of MINE: mines_for_junction =
[ {m | m in MINE where j in junctions_for_mine[m] }| j in JUNC ];

forall(m in MINE , t in TRIP , j in JUNC diff junctions_for_mine[m])
(junction_time[j,m,t] = 0 /\ junction_wait[j,m,t] = 0);

Travel time: leg-to and leg-from mine: We model (separately) the travel
time for full trips, from the mine to the first junction on its path to the port. In
a similar way we also model travel time for empty trips, from the last junction in
the path to the mine. Note how full trips constrain the times between junctions
in the opposite order to empty trips.

forall(m in MINE , t in FTRIP)
( let { JUNC: j = path[m,1]; LOC: l = junc_loc[j]; } in

junction_time[j,m,t] >= mine_time[m,t] + travel_time[m,l] );
forall(m in MINE , t in ETRIP)

( let { JUNC: j = path[m,1]; LOC: l = junc_loc[j]; } in
mine_time[m,t] >= junction_time[j,m,t] + junction_wait[j,m,t]

+ stop_allowance + travel_time[l,m] );



Travel time: inter-junction legs: Travel time between adjacent junctions
gives rise to a similar constraint.

forall(m in MINE , t in FTRIP)
( forall(s in 1..maxleg -1 where path[m,s+1] != dummy)

( junction_time[path[m,s+1],m,t] >= junction_time[path[m,s],m,t]
+ junction_wait[path[m,s],m,t]
+ travel_time[junc_loc[path[m,s]],junc_loc[path[m,s+1]]] ) );

forall(m in MINE , t in ETRIP)
( forall(s in 1..maxleg -1 where path[m,s+1] != dummy)

( junction_time[path[m,s],m,t] >= junction_time[path[m,s+1],m,t]
+ junction_wait[path[m,s+1],m,t]
+ travel_time[junc_loc[path[m,s+1]], junc_loc[path[m,s]]] ) );

Minimal wait times: A train needs to come to a complete stop to wait at a
junction hence there is a minimal amount of time it is delayed by any wait.

forall(j in JUNC , m in MINE , t in FTRIP)
( junction_wait[j,m,t] = 0 \/

junction_wait[j,m,t] >= stop_allowance + start_allowance );

Siding capacity at junctions: We constrain trains waiting at a junction j
to be no more than the number of sidings at the junction, sidings[j].

forall(j in JUNC)
( cumulative ([ junction_time[j,m,t] | m in MINE , t in TRIP],

[junction_wait[j,m,t] | m in MINE , t in TRIP],
[ 1 | m in MINE , t in TRIP], sidings[j]) );

Headway constraints at junctions: Rather than using a disjunctive con-
straint to model that no two trains pass a junction in the same direction within
headway time, since all the “durations” of these tasks are the same we simply
use alldifferent. This is slightly stronger constraint than the disjunctive

constraint but accurate enough for capacity planning.

forall(j in JUNC)
(alldifferent ([ junction_time[j,m,t] div headway_time

| m in mines_for_junction[j], t in FTRIP]) /\
alldifferent ([ junction_time[j,m,t] div headway_time

| m in mines_for_junction[j], t in ETRIP]));

4.2 Single track constraints

When there is only a single track between two locations we must ensure no
two trains try to use the track while traveling in opposite directions. Though
there are complex ways of modelling this using variable set up times we adopt
a simpler approach where each train reserves the track for the entire time it
is using it. By varying the granularity of the model (adding new junctions) we
can limit the inaccuracy that derives from this overly restrictive constraint. This
approach requires us to introduce the notion of track segments into the model.

A track segment s in SEG has: a start junction, start junc, which may
be dummy if the segment is a leaf; an end junction, end junc; an (optional) set
of mines that sit on that segment (usually in unmodelled mine-specific balloon
loops), mines on segment; and a set of mines that use the segment on their path
to and from the port, mines using segment.
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Fig. 2. Part of an (abstract) rail network.

Example 1. Consider the abstract rail network shown in Figure 2 which includes
junctions j1 and j2, mines m1, . . . , m5 and unmodelled intersections u1, u2 and
u3. The rail network consists of 2 segments: a leaf segment ending at j2 which
includes the mines m3, m4 and m5, and a non-leaf segment from j2 to j1 which
includes the mines m1 and m2. There are no (additional) mines that use the
first segment on their path to the port, while the mines m3, m4 and m5 all use
the second segment on their path to the port. ut

Leaf segments: Leaf segments connect mines to the rest of the network. We
make sure that no train going to or from a mine in that segment overlap in time
by using the travel time to/from the mine to the end junction of the segment.

array[SEG] of set of MINE: mines_on_segment;
forall(s in SEG where start_junc[s] = dummy)

({ let { JUNC: j = end_junc[s]; LOC: l = junc_loc[j]; } in
disjunctive ([ if t in FTRIP then % start time

mine_time[m,t]
else junction_time[j,m,t] + junction_wait[j,m,t] endif

| m in mines_on_segment[j], t in TRIP ],
[ if t in FTRIP then % duration

travel_time[m,l]
else travel_time[l,s] endif

| m in mines_on_segment[s], t in TRIP ] ) );

Non-leaf segments: Non-leaf segments are used to handle trains traveling
between the start and end junctions of the segment. They also handle trains
that travel from either of these junctions to a mine that sits on the segment.
Notice that this constraint always uses the start-to-end travel time. There is an
implicit assumption here that this duration is always less than the travel time
to (or from) a mine that sits on the segment. For our data sets this is always the
case, but the model would need adjustment if it were not the case.

array[SEG] of set of MINE: mines_using_segment;
forall(s in SEG where start_junc[s] != dummy)

( let { JUNC: sj = start_junc[s]; LOC: sl = junc_loc[sj];
JUNC: ej = end_junc[s]; LOC: el = junc_loc[ej];
set of MINE: M = mines_on_segment[s] union

mines_using_segment[s]; } in
disjunctive ([ if t in FTRIP then % start time

junction_time[sj,m,t] + junction_wait[sj ,m,t]
else junction_time[ej,m,t] + junction_wait[ej,m,t] endif

| m in M, t in TRIP ],
[ if t in FTRIP then % duration

travel_time[sl ,el]
else travel_time[el ,sl] endif

| m in M, t in TRIP ] ) );



4.3 Search Strategy

We use the Gecode [14] solver to tackle our models. The default autonomous
search does not perform well so we employ the following simple hybrid which
does: we use a dom/wdeg variable selection heuristic [11] but order the variables
carefully so that tie-breaking in dom/wdeg chooses the variables in a sensible
order. We have found the following simple ordering to be particularly effective:
(i) decision variables that determine arrival and departure times from mine load-
points appear first; (ii) decision variables that determine arrival and departure
times from port unload points appear next; (iii) all other decision variables fol-
low, in any order. Given decision variables that are ordered in a “good” way, we
have found that Gecode can often identify near-optimal solutions very quickly.

5 Experiments

We use our optimisation model to explore a range of infrastructural scenarios,
many of which are difficult to evaluate analytically. These scenarios are:

– Capacity of the current infrastructure.
– Capacity under the assumption of increased payloads per train.
– Capacity assuming the addition of new below-rail infrastructure6; e.g. addi-

tional signalling and duplicated rail lines.

Where possible we will compare our computational approach against the
industry-standard analytic techniques discussed in Section 3. Recall that these
simplified models are used to compute the maximum theoretical capacity of in-
frastructure. We will compare against these optimistic upper-bounds in order to
evaluate the quality of solutions computed with our CP model. Capacity figures
are always given in Mtpa: Millions of tonnes (of coal) per annum.

5.1 Infrastructural Capacity With Analytic Modelling

Recall that the analytic model from Section 3 focuses on different aspects of the
network to the exclusion of all other factors. To mitigate this myopic bias we
will compute analytic capacity from three points of view: ports, mines and the
physical rail lines. Table 2 presents our results. We assume loading, unloading
and travel all proceed without delay and that infrastructure is always available
and always operates at maximum throughput. When modeling trains we use a
range of established operational parameters including real-world headway times
and industry maximums for train length and payload size in each rail system.
The full set of all such parameters are given in Table 1 while results from this
analysis are given in Table 2. We make several observations:

6 In industry terminology, below-rail refers to infrastructure controlled by the network
owner, such as the physical track and signals. By comparison above-rail refers to
infrastructure such as trains, wagons and other so-called rolling stock.



Network Theoretical Capacity Model Additional Parameters
AMine APort ALine Infrastructure Availability Line Type

Blackwater 329.3
162.2

278.6 100% Single Track
Moura 131.7 61.9 100% Single Track

Goonyella 658.7 221.4 460.4 100% Single Track
Newlands 98.7 81.0 127.02 100% Single Track

Table 2. Analytic evaluation of the theoretical capacity of each rail system in the
CQCN. Each of the three models take as input operational parameters from Table 1.

Network Parameters Network Performance
LPM TPM Trains Avg. Cycle Time Total Wait Port Util. Capacity

B/Moura 15 2 13,464 17.4 hrs 0 87.8% 142.7
Goonyella 15 2 15,130 19.8 hrs 0 89.2% 198.9
Newlands 35 4 8,860 10.0 hrs 0 95.5% 77.9*

Table 3. CP-based rail capacity. We assume current CQCN operational parameters,
as described in Table 1. Columns LPM and TPM respectively indicate the number of
loads per mine (i.e. the size of the freight task) and the number of (dedicated) trains
per mine. Figures denoted with * are provably optimal.

– The data suggests that water-front unload points (and not the rail network)
is the most likely bottleneck in each rail system.

– The port bottleneck observation holds despite our (pessimistic) assumption
of single-line track for every ALine model. Note that while this assumption
is true for Moura and Newlands there exist large portions of Blackwater and
Goonyella that are duplicated. We continue to use the single-line assumption
in these cases as the the majority of mines are on spurs7 that connect to the
network via single-track branch lines.

5.2 Infrastructural Capacity With Optimisation

Next, we evaluate capacity in the CQCN using our scheduling-based optimisation
model and the Gecode solver. As in the analytic case we employ the full range
of real-world parameters from Table 1 and assume that infrastructure is always
available and operates at maximum throughput. The first solution is typically
found in seconds and we allow the solver to run for up to a minute thereafter.

We evaluate the capacity of each rail system by measuring its steady-state
performance and extrapolating out to a full year. To avoid warm-up and cool-
down effects we ignore loading and unloading operations at the beginning and
toward the end of the schedule. In particular we consider only port arrivals
between the first and third quartiles of our planning horizon. Results are given
in Table 3. We make several observations:

7 In industry terminology, a spur is a short branch usually leading to a private siding.
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Fig. 3. Tuning LPM and TPM parameters for the Newlands System model. We isolate
each parameter and vary its value. We measure the impact of each change by computing
the percentage utilisation of port unloaders in each resultant scenario.

– In the case of the Newlands system we find that our optimisation approach
is able to compute an exact figure for the maximum infrastructural capacity
of rail. The figure (77.9 Mtpa) is within 5% of the optimistic upper-bound
established by the analytic model APort.

– In the case of Blackwater/Moura and Goonyella we compute approximate
capacities which are within 10.8% and 10.2% of the upper-bound APort.

– In all three cases port utilisation is very close to or above 90%. These figures
suggest that the rail network is not the primary limiting factor for increased
coal export volumes in the future. Rather, each system appears constrained
by the infrastructural capacity of their respective ports.

For the experiments at hand the parameters LPM and TPM were hand-
tuned on a per-model basis. If LPM is too small, the freight task can be finished
quickly and before the system can reach a steady state. Alternatively, if LPM is
too large the problem may grow to a size where our optimisation solver cannot
compute a good solution in reasonable time. Similar observations are true for the
parameter TPM. Given too few trains the port infrastructure can remain idle
for long periods and its performance will not be indicative of potential capacity.
On the other hand a TPM value that is too large can explode the search space,
again making any solution difficult to find in a reasonable amount of time.

With LPM=15 and TPM=2 the size of the planning horizon is 7.3 days for
Goonyella and 5.9 days fro Blackwater/Moura. We found these values sufficient
to take reliable readings of network performance. In the case of the Newlands
System the planning horizon with these parameters is too small to be useful (<3
days). Figure 3 gives results from a range experiments in which we empirically
identified appropriate values for Newlands. Notice that: (i) setting TPM > 4
does not make any difference to port utilisation but smaller values have a large
impact; (ii) setting LPM < 30 is insufficient to reach the system’s steady-state.

5.3 Case Study: Increased Payloads

One of the case studies asked for by our industry partner is to determine rail
capacity under the assumption that all trains have fixed payloads. The proposed



10Kt Scenario 12Kt Scenario 14Kt Scenario Current Max Scenario
Capacity T. Len Capacity T. Len Capacity T. Len Capacity T. Len

B/Moura 139.6 1587m 145.6 1904m 138.4 2205m 142.7 1670m
Goonyella 197.5 1578m 198.6 1904m 197.8 2205m 198.9 2071m
Newlands 69.3 1578m 61.9 1904m 64.1 2205m 77.9 1369m

Table 4. Experiments using a range of alternative payload sizes. We measure capacity
in three scenarios where all trains carry uniform payloads of 10, 12 and 14Kt (kilo-
tonnes) of coal. For context, we also give results from the current capacity scenario
which considers fully-loaded trains of the maximal size currently permitted in each rail
system (see Table 1). Figures in bold indicate best results (highest capacity) found.

volumes are 10Kt, 12Kt and 14Kt. Increased payload scenarios involve modeling
trains which are longer or which comprise wagons that are more densely packed.
Lacking data regarding alternative wagon configurations we opt to model longer
trains. Note that both options may require additional below-rail infrastructure;
either in the form of longer balloon loops (to support longer trains) or new load
and unload equipment (configured to support densely packed trains).

To model trains with alternative payload configurations we simply modify
a single value in the associated data file for each network and run the solver
anew. No change to the optimisation model is needed. A similar data-driven
change would also be sufficient to model the densely-packed scenario (in this
case we would need to modify wagon length and wagon capacity parameters in
addition to payload size). All other parameters remain as in Section 5.2. Results
from this experiment are given in Table 4. We observe that with few exceptions
each increased/uniform payload scenario appears to make little difference to rail
capacity beyond what can be achieved by running trains with the maximum cur-
rently permissible payload size. One exception is the Blackwater/Moura system
where a small gain of 3Mtpa can be achieved by running 12Kt trains instead of
the current maximum payload size of 10.6Kt.

5.4 Case Study: Decreased Headway

Another possibility for increasing the capacity of a rail system is to decrease the
cycle time (i.e. round-trip time) per train. Such scenarios could involve deploying
additional infrastructure or technology to allow decreased headway (i.e. a smaller
temporal separation) between trains or the introduction of new rolling stock
that can travel at faster speeds. We model the decreased headway scenario here
though new rolling stock is equally simple to analyse. In both cases we make
changes only to parameter values. The optimisation model remains unchanged.
Results are given in Table 5.

In a range of experiments we observe that the total throughput of each rail
system is largely invariant, even with reduced headway times. In the case of
Blackwater/Moura system an increase of 3% (vs. the Current Capacity scenario)
appears achievable if we fix the headway time of all trains to 26 minutes. This



Headway Blackwater/Moura Goonyella Newlands
(mins) Capacity Port Util Capacity Port Util Capacity Port Util

6 145.8 89.6% 195.9 87.9% 60.1 73.7%
16 144.7 89.0% 198.9 89.2% 64.8 79.4%
26 147.6 90.7% 202.6 90.9% 66.7 81.7%
30 142.2 87.4% 195.5 87.7% 80.5 98.6%

Current 142.7 87.8% 198.9 89.2% 77.9 95.5%

Table 5. Experiments using a range of fixed headway times. We evaluate their effec-
tiveness in terms of capacity and port utilisation. For context, we compare these results
against the capacity figures computed in Section 5.2 (row “Current”). Figures in bold
indicate best results (highest capacity) found.

value is larger than the 20 minutes currently used for junctions in the Blackwater
system but much smaller than the 90 minutes used in Moura. A similar gain
can be achieved in Newlands when headways are reduced to 30 minutes (cf. 36
currently). It is interesting to note that for the Goonyella system the best result
is for 26 minutes (cf. 16 currently). We interpret this as suggestive that small
amounts of extra waiting can help when there is a high degree of contention for
rail resources.

5.5 Case Study: Track Duplication

For a final case study we consider the impact on rail capacity through the du-
plication of key sections of rail track. Introducing new line capacity into the
system reduces waiting and track contention and allows parallel travel in both
directions (i.e. simultaneously to and from the port). There are two aspects to
such an analysis: (i) we must identify which sections of track are most likely
to yield the greatest benefit; (ii) we must evaluate the effect of the proposed
simulation. We begin with an analysis of the Blackwater system.

Figure 4 shows the arrival frequency of trains at the most visited junctions
in the Blackwater system. A junction is a reasonable candidate for duplication
if the arrival frequency of trains traveling in the same direction is close to or
less than the minimum headway time. We observe that while the busiest single-
line junctions (Dingo, Walton, Umolo and Bluff) have trains arriving every 27-28
minutes, the frequency in any single direction is almost twice that at 50 minutes.
As there is no contention we may thus infer that track duplication at these points
will not increase the infrastructural throughput of the system. We confirmed this
hypothesis empirically. Similar results hold for each of the other rail systems
under consideration.

It is important to note that track duplication e.g. between Dingo and Bluff
may still make sense operationally. With only 30 minutes of idle time between
arrivals, and round-trip times of over 17 hours (see Table 3), it is entirely possible
that unforeseen delays during loading, unloading or during travel on the network
could result in contention for track resources at these locations.
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Fig. 4. Most visited single-line junctions in the Blackwater system. We give the aver-
age time difference between arrival times for full and empty trains at each junction.
Measurements are in minutes and reflect system performance during its steady state.

6 Conclusion

We evaluate the infrastructural capacity of four rail systems which together com-
prise the Central Queensland Coal Network. Similar capacity evaluation prob-
lems appear in a range of industrial settings but especially cases where bulk
goods and freight containers must be railed between inland terminals and the
waterfront. Effective models that capture the dynamics of a such a system are
prized tools of industry planners.

We propose a new approach for rail capacity estimation using constraint
programming with MiniZinc. Written in the form of a scheduling problem, our
model is simple to develop, easy to extend and can be used to compute fast and
accurate capacity estimates for large rail networks. Because it is data-driven the
model makes it especially easy to evaluate a wide range of “what-if” scenarios of
interest to industry planners. We give particular examples involving alternative
train payloads, alternative headway times and track duplication scenarios.

There are many other scenarios of practical interest such as mixed train
lengths and grade easing. We could extend our model to investigate these. We
can also extend our model to capture further dynamics of the system like: sched-
uled downtime, different train speeds, refuelling operations and crew changeover.
Most of these extensions appear quite straightforward to achieve.

We believe the principal lesson of this paper is that optimisation technology
has matured to the point where we can quickly undertake detailed infrastructure
modelling and analysis. Such capability is essential to inform long-term infras-
tructural investment decisions made by governments and large corporations.
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