Breaking Path Symmetries on 4-connected Grid Maps

Daniel Harabor and Adi Botea
NICTA and The Australian National University
Email: firstname.lastname @nicta.com.au

Abstract

Pathfinding systems that operate on regular grids are com-
mon in the Al literature and often used in real-time video
games. Typical speed-up enhancements include reducing the
size of the search space using abstraction, and building more
informed heuristics. Though effective each of these strategies
has shortcomings. For example, pathfinding with abstraction
usually involves trading away optimality for speed. Mean-
while, improving on the accuracy of the well known Manhat-
tan heuristic usually requires significant extra memory.

We present a different kind of speedup technique based on the
idea of identifying and eliminating symmetric path segments
in 4-connected grid maps (which allow straight but not di-
agonal movement). Our method identifies rectangular rooms
with no obstacles and prunes all interior nodes, leaving only a
boundary perimeter. This process eliminates many symmet-
ric path segments and results in grid maps which are often
much smaller and consequently much faster to search than
the original. We evaluate our technique on a range of differ-
ent grid maps including a well known set from the popular
video game Baldur’s Gate II. On our test data, A* can run up
to 3.5 times faster on average. We achieve this without using
any significant extra memory or sacrificing solution optimal-

1ty.

Introduction

In the context of single-agent pathfinding A* (Hart, Nils-
son, and Raphael 1968) is regarded as the gold standard
search algorithm. It is complete, optimal and optimally
efficient which makes it very attractive to researchers in
the area. Many studies exist which have attempted to im-
prove on the performance of A*. The majority focus in
one of two directions: reducing the search space through
hierarchical decomposition and identifying better heuristics
to guide search. In the case of hierarchical decomposi-
tion, techniques such as HPA* (Botea, Miiller, and Scha-
effer 2004) and PRA* (Sturtevant and Buro 2005) seek to
construct and explore a much reduced approximate state
space. These methods are fast and require no signifi-
cant extra-memory when compared to A*. However, they
have the disadvantage that solutions are not guaranteed to
be optimal. Meanwhile, in case of the improved heuris-

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tics, it has been frequently shown that obtaining better in-
formed results than than the popular Manhattan heuristic
usually incurs significant memory overhead (Sturtevant et
al. 2009; Goldberg and Harrelson 2005; Cazenave 2006;
Bjornsson and Halldérsson 2006). Furthermore it is well
known that even heuristics which differ from perfect in-
formation by at most a (small) additive constant, can still
exhibit poor performance on a range of problems such as
Al planning and graph search (Helmert and Roger 2008;
Pohl 1977).

In this paper we explore a new speedup technique that
aims to reduce the size of the search space while preserv-
ing optimality. Our work focuses on eliminating symmet-
ric path segments from 4-connected grid maps, which allow
straight but not diagonal movement. Although less popu-
lar than the 8-connected variant, this domain appears reg-
ularly in the literature (Yap 2002; Wang and Botea 2008;
Pochter, Zohar, and Rosenschein 2009) and is often found
in the pathfinding systems of modern video games. Some
recent examples include Square Enix’s Heroes of Mana (re-
leased in 2007 for the Nintendo DS), Astraware’s My Little
Tank (2008, iPhone) and Atari’s Dragon Ball Z: Legacy of
Goku (2002, Gameboy Advance).

Consider as a motivating example the simple map in Fig-
ure 1. Such topographies, with rooms and corridors, ap-
pear often in video games (e.g., dungeon areas in roleplay-
ing games can be described in such terms, albeit on a larger
scale). Running A* on a standard grid can be surprisingly
inefficient in such instances. In Figure 1, many tiles have
[f-values smaller than the goal’s, and A* must expand them.
Many of the explored paths are symmetric in the sense that
they can be obtained from each other by re-ordering the
moves.

To solve the problem more efficiently we will automati-
cally discover obstacle-free rectangular rooms and observe
that while there are many ways to optimally traverse across
a room there is always a solution involving only nodes from
the perimeter. This observation forms the basis for our sym-
metry elimination technique: we prune all nodes from the
interior but not the perimeter of an empty room and, to pre-
serve optimality, replace them with a series of macro edges
that allow moving directly from one side of an empty room
to the other. In the process we eliminate almost all equiv-
alent path segments when crossing a room, significantly re-

Figure 1: (Top) A highly symmetric pathfinding instance.
Many solutions exist; we highlight three. (Bottom) The
same map with our symmetry elimination method applied.
We decompose the map into a set of obstacle-free rooms
from which we prune all nodes except those on the perime-
ter. We replace them with a small set of macro edges that
connect the perimeter nodes directly.

ducing the number of locations that must be explored. Cases
when the start (or the goal) location belongs to the interior of
an empty rectangle are handled by temporarily re-inserting
these nodes back into the map.

Our method is easy to understand and implement. It pro-
duces grid maps that are often much smaller than the original
grid map (and never larger), have the same branching factor
and preserve the same completeness and optimality guaran-
teeing characteristics. Further, since our method is focused
on eliminating symmetries in the search space, it is orthog-
onal to, and can be used in conjunction with, existing search
techniques including hierarchical and low level pathfinding
systems as well as memory-based heuristics. We demon-
strate its effectiveness by undertaking an empirical analysis
on a wide range of maps, including a well known set from
the popular roleplaying game Baldur’s Gate II. On our test
data the average performance of A* is increased by a factor
of up to 3.5, depending on the topography of the map being
used.

Related Work

One recent result on the problem of eliminating unneces-
sary path fragments on grid maps is due to Pochter, Zohar,

and Rosenschein (2009). They introduce swamps, which are
areas that don’t have to be searched because crossing them
would not improve the length of paths. The identification
of swamps is quite different to our empty room decomposi-
tion. Additionally, swamps are shown to be most effective
in areas featuring a large number of obstacles and less effec-
tive on maps featuring wide open areas. By comparison, our
algorithm is most effective when large empty rooms can be
identified and less effective when this is not the case. Thus
the two methods are in some sense complementary.

Our work also bears some similarity to new heuristic
methods aimed at improving the performance of standard
A* on grid maps (Bjornsson and Halldérsson 2006). In that
work, like in ours, grid maps are decomposed into obstacle-
free zones connected by entrances and exits. A preliminary
online search in the decomposed graph identifies zones that
do not appear on any path between the start and goal node,
thus yielding the dead-end heuristic. It can be seen as a
technique for detecting areas that don’t have to be searched
in the instance at hand and, as before, is complementary to
our work.

MSA* (Bolanca 2009) is a new optimality preserving
search algorithm which attempts to speed up search on
8-connected grid maps by exploiting path equivalence in
empty rectangular rooms. Rather than pruning nodes from
the interior of an empty room however MSA* attempts to
speed up search by generating macro edges on the fly. An
improvement over conventional A* is reported but the al-
gorithm is also shown to expand a large number of nodes
from the interior of empty rooms, which hampers its perfor-
mance. It is also worth noting that MSA* uses a different
empty room decomposition method from the one described
in our work.

Fringe Search (Bjornsson et al. 2005) is a general pur-
pose iterative deepening technique which also aims to im-
prove on the performance of A*. This work is quite different
from others we have discussed in that it does not rely on any
specific decomposition technique nor on the development of
any new heuristics to guide the search. It is provably optimal
if maximum search depth is sufficiently large and it has been
shown to run between 25-40% faster than A*. As our work
is an offline graph-pruning technique, it could be combined
with any search algorithm, including Fringe Search.

Another effective method for solving path planning prob-
lems is to reformulate the original problem into an equiva-
lent one in a much smaller abstract search space. Algorithms
in this category are usually fast, memory-efficient and sub-
optimal. The HPA* algorithm (Botea, Miiller, and Schaef-
fer 2004) uses a map decomposition approach, dividing a
grid map into a series of fixed-size clusters connected by en-
trances. As with Fringe Search, HPA* could be combined
with our work on 4-connected grids. For example, first ap-
ply our pruning strategy and then apply HPA* to the result-
ing grid map.

Offline Symmetry Elimination
Pathfinding in modern video games often involves exploring
highly regular environments such as cities, sewers or dun-
geons (e.g Figure 4). Though these locales tend to be topo-

graphically simple (usually being comprised of empty rooms
connected by corridors) they can also be highly symmetric
with many optimal length paths existing between arbitrary
pairs of locations. Symmetry appears in many domains (e.g.
constraint programming (Walsh 2007)) and, unless it is han-
dled properly, almost always increases the size of the search
space and forces search algorithms to waste time.

We propose the following offline strategy for identifying
and eliminating symmetric paths in 4-connected grid maps:

1. Decompose the grid map into a set of empty rooms, where
each empty room is rectangular in shape and free of any
obstacles. The size of the rooms can vary across a map,
depending on the placement of the obstacles.

2. Prune all nodes from the interior but not the perimeter of
each empty room.

3. Add aseries of macro edges that connect each node on the
perimeter of an empty room with a node on the directly
opposite side of the room !. The cost of each edge is equal
to the Manhattan distance between its two endpoints.

Trivial rooms which contain no interior nodes (for example
rooms with a width w or height A < 2) are left unmodified
by steps 2 and 3. Figure 1 shows an example of this process.
For each non-trivial room we prune (w—2) x (h—2) interior
nodes and, in the process, eliminate a large number of sym-
metric paths between nodes on the perimeter. We claim that
this approach preserves optimality when traversing across
any arbitrary room.

Lemma 1. Let R be an arbitrary rectangular room that is
free of obstacles and m,n be two locations on its perimeter.
Then m and n can be connected optimally through a path
that mentions only nodes on the perimeter of R and possibly
involves a macro edge.

Proof. There are two distinct cases to consider. Case 1 is
when m and n are placed on the same side of the perimeter,
or on two orthogonal sides. To obtain an optimal path we
can simply travel along the perimeter from m to n. Case 2 is
when m and n are placed on opposite sides of the perimeter.
To obtain an optimal path we can simply follow the macro
edge at m and navigate directly to a node m’ located on the
same side of the perimeter as n. Then, go from m’ to n along
the perimeter. The resultant path is optimal as its length is
equal to the Manhattan distance between m and n. O

A direct corollary to Lemma 1 is that we can prune from
consideration all nodes from the interior of R and limit our-
selves to only searching nodes appearing along its perimeter.
The only remaining consideration is how to deal with inte-
rior nodes that happen to be the start or goal location for the
search at hand. We address this case in the following section.

Online Insertion

Often an interior node pruned as a result of offline symme-
try elimination is required as a start or goal location for an
agent. We handle such cases by inserting back into the graph

! Alternatively, macro edges could be generated on-the-fly dur-
ing search. This obviates the need to store them explicitly.

Figure 2: (Top) When m and n are in the empty room no
insertion is necessary. (Bottom) m is a previously pruned
interior node. We insert m into the graph and connect it to
neighbours on each side of the empty room.

interior start and goal nodes for the duration of the search.
We use the following procedure (highlighted in Figure 2):

1. If the start and goal are in the same room no insertion
is required. Since it is guaranteed that there are no obsta-
cles between the two locations, an optimal path is trivially
available. This case will be ignored in the rest of our dis-
cussion.

2. If the start and goal are not in the same room, connect

each of them to the closest neighbours on each side of the
perimeter of the empty room.

We claim that this procedure retains optimality when search-
ing from the start (or goal) location to all nodes on the
perimeter of its room.

Lemma 2. Let R be an empty rectangular room. For any
nodes m,n, with m a re-inserted interior node and n a node
on the perimeter, it is always possible to find an optimal
length path which mentions no interior nodes except for m.

Proof. We insert m into the graph and connect it to
m}, mb, ms, mj, the closest neighbours on each side of the
perimeter. The weight of each edge incident with m is equal
to the Manhattan distance between m and each m;. To find
an optimal path to n we travel from m to the node m/ which
is on the same side as n on the perimeter. From there we
travel along the perimeter of I until we reach n. O

Once the search has finished we remove the start and goal
from the graph. The time required in each case (insertion
and deletion) is constant.

Optimality
We claim that the symmetry elimination procedure outlined
earlier is sufficient to guarantee that A*, running on our
pruned grid maps, will always return an optimal solution if
one exists.

e T P —
e [Ll L
o WEEEE L s

L Lrr Ll

- C T

Figure 3: (Left) A* solving a problem on an unmodified
(86 x 88) grid map. Expanded nodes are marked dark grey.
(Right) A* solving the same problem using our modified
grid map. The algorithm only considers nodes along the
perimeter of the identified rooms.

Theorem 3. For every optimal length path 7 (s, g) in a 4-
connected grid map there exists an equivalent length path in
the pruned version of the grid map.

Proof. Follows from Lemma 1 and Lemma 2. For every op-
timal length segment of 7* (s, g) which traverses through an
empty room, from a perimeter node m to a perimeter node
n, there is an equivalent segment which mentions only nodes
on the perimeter of that room (and possibly one macro-
step). O

A direct corollary of Theorem 3 is that optimal solu-
tions pruned by our symmetry reduction can be easily recon-
structed; for example to avoid unnatural looking paths where
agents seem to hug walls. Consider a path fragment between
m and n, two nodes on the perimeter of an empty room. As-
sume, without any generality loss, that the path fragment
contains r moves to the right and © moves upwards. All op-
timal path fragments between m and n can be obtained by
interleaving r moves to the right and v moves upwards in
any order (e.g right-right-up, right-up-right, up-right-right)

In Figure 3 we highlight the effectiveness of our symme-
try breaking technique using a map that has characteristics
typical of what one might expect in a modern role-playing
game?; there are many rooms and corridors and many en-
trances connecting them. A* running on the original grid
map expands almost half the nodes in the state space of the
shown example. We then apply our technique to eliminate
symmetries and re-run A*. This time A* expands less than
15% of all nodes (more than a three-fold improvement) and
returns an optimal solution 3 times faster.

Identifying Empty Rooms
In this section we give a simple but effective flood-fill-based
algorithm for decomposing a grid map into empty rectan-
gular rooms. We will try to build large rooms before small
ones and prefer rooms which contain as many interior nodes
as possible:

*In fact, many video game maps tend to be somewhat bigger
than our example but for demonstration purposes it is sufficient.

1. For each traversable tile ¢, build a maximal size empty

rectangle which has ¢ as its upper left corner. Each such
rectangle should contain only traversable tiles which have
not already been assigned to a room.

2. Using a Max-Heap, sort the list of traversable tiles using

the number of interior nodes in the rectangle of each ¢ as
its priority.

3. Take from the heap the tile ¢ with highest priority which

has not already been assigned to a room.

4. Verify the priority of ¢ by building another maximal size

empty rectangle (as per Step 1) which has ¢ as its upper
left corner and contains no obstacles or tiles already as-
signed to another room.

5. If the number of interior nodes in the new rectangle is

equal to the priority of ¢t we say that the rectangle forms
a room and add it to our decomposition. Otherwise, we
update the priority of ¢ with the number of interior nodes
contained in the new rectangle.

6. Repeat Steps 3 to 5 until the heap is empty and all nodes

have been assigned to a room in the decomposition.

The construction of empty rooms is similar to the com-
putation of clearance values in Harabor and Botea (2008).
In that work the objective is to calculate the amount of
traversable space at any given location on the map. This is
achieved by constructing maximum sized squares that orig-
inate at each traversable tile on the map. Our room identi-
fication procedure can be seen as a variation of this method
in which we extend each such square into a maximal size
rectangle.

As we will see the performance of A* on our modified
grid map is closely related to the total number of nodes we
are able to prune. Thus, identifying large rooms is critical.
Although our decomposition technique is not optimal for
this purpose it is simple to understand and implement and
produces good results in practice.

Experimental Setup

To evaluate the effectiveness of our symmetry elimination
technique we performed a comparative analysis using A*
on a number of benchmarks taken from the freely available
pathfinding library Hierarchical Open Graph (HOG)?:

e Adaptive Depth is a set of 12 maps of size 100x 100 in
which approximately % of each map is divided into adja-
cent rectangular rooms of varying size and the rest of the
map is a large open area interspersed with large randomly
placed obstacles.

e Baldur’s Gate is a set of 120 maps taken from BioWare’s
popular roleplaying game Baldur’s Gate II: Shadows of
Amn. Often appearing as a standard benchmark in the lit-
erature (Botea, Miiller, and Schaeffer 2004; Bjornsson et
al. 2005; Bjornsson and Halld6rsson 2006; Sturtevant and
Buro 2005; Harabor and Botea 2008) these maps range in
size from 50x50 to 320x320 and have a distinctive 45-
degree orientation. Figure 4 shows a typical example.

Shttp://www.googlecode.com/p/hog2

Figure 4: A map from BioWare’s Baldur’s Gate I1

e Rooms is a set of 300 maps of size 256 x256 which are
divided into 32x32 rectangular areas that are connected
by randomly placed entrances.

For each map we removed all diagonal edges and ran-
domly generated 100 valid problem instances. We then ran
A* twice: once on the original maps and again on our modi-
fied maps making for a total of 86400 (432 x100x2) distinct
experiments. Our test machine had a 2.93GHz Intel Core 2
Duo processor, 4GB RAM and ran OSX 10.6.2. We use the
A* implementation provided in HOG.

Results

Our main results are given in Table 1 and Figure 5. We will
briefly introduce both and then discuss them in the context
of each of our three benchmarks.

Table 1 measures the percentage of nodes pruned from
each set of maps. We give figures for the minimum, maxi-
mum and average number of nodes pruned. We also give the
standard deviation as an indicator for the level of variability
associated with each result. Meanwhile, Figure 5 shows the
average speedup experienced by A* when running on our
modified grid maps as compared to the original. We mea-
sure speedup in terms of node expansions and search times.
For example, a search time speedup of 2.0 is twice as fast
and a node expansion speedup of 2.0 indicates 50% fewer
nodes were expanded.

Table 1: Graph Size (% of Nodes Pruned)
Benchmark Mean Min Max Std Dev.

BG 4233 19.82 78.36 11.80
AD 63.24 5798 66.69 2.10
Rooms 49.77 49.46 49.96 0.19

Adaptive Depth: The topography of the maps in this
benchmark were favourable for our symmetry breaking tech-
nique. Our decomposition algorithm was able to identify
many large open areas and pruned between 58% to 67% of
all nodes. Its average performance was just over 63%. We
also observed up to a factor of 3.5 reduction in the average
number of nodes expanded by A* and a similar maximum
search time speedup. It is interesting to note that for short

instances, for example those with path lengths < 15, we ob-
served search times that were only 1.7 times faster on av-
erage. By comparison, instances with longer path lengths
were solved 2.6 to 3.5 times faster. This is because in many
cases, though not in general, longer paths tended to traverse
through more empty rooms where there exists more oppor-
tunities to take advantage of the pruning enhancement.

Baldur’s Gate: The maps in this benchmark are a mix-
ture of large and small areas which sometimes contain obsta-
cles and may be connected by long narrow corridors. They
also have a distinct 45-degree orientation which makes it dif-
ficult to decompose traversable areas into rectangular rooms.
For example, though our decomposition algorithm can prune
as many as 78% of all traversable nodes on some maps, its
average performance is only 42%. There is also a reasonably
high level of variability associated with this result: we mea-
sured a standard deviation of almost 12%. Nevertheless, we
observed that average A* search times and average A* node
expansions were both improved by a factor of between 1.8 to
2.3. We expect that these results could be further improved
given a more effective decomposition algorithm.

Rooms: The maps in this benchmark were all very sim-
ilar, comprising of 32x32 rectangular rooms connected by
randomly placed entrances. Each room is of size 7x7 and
contains 49 nodes. 24 of these (or just under 50%) are in-
terior nodes which we expected would be pruned. Table 1
shows that this was indeed the case. When we ran A* on
these grid maps we observed in most cases a factor of 2 re-
duction in both the average number of nodes expanded and
average search time. Given rooms with proportionally larger
dimensions we would expect to see a proportionally larger
improvement in the performance of A*. We expect the same
is also true as rooms become smaller where in the worst case
there are no interior nodes to prune from any room.

Conclusion

We study the problem of symmetric path elimination in
4-connected grid maps. Though less popular than the 8-
connected variant, 4-connected grid maps appear regularly
in modern video games and academic literature.

We presented a novel offline method for breaking path
symmetries which is simple to understand and requires no
significant extra memory. Our method involves decom-
posing a map into empty rectangular rooms, pruning all
nodes appearing in the interior and replacing them with a
set of macro edges that facilitate optimal traversal from the
perimeter of any room to the perimeter of any other. We also
give an online node insertion technique that extends these
guarantees to arbitrary pairs of locations appearing in the
original unmodified map.

We evaluate the performance of our algorithm by running
A* on a wide range of realistic game maps including one
well known set from the game Baldur’s Gate II. In many
cases we are able to prune over 50% of all nodes on a given
map and improve the average search time performance of
A* by a factor of up to 3.5.

The performance of our method depends on the topogra-
phy of individual maps: in the presence of large rooms or

Average Speedup: Adaptive Depth

Average Speedup: Baldur's Gate

Average Speedup: Rooms

» 1 — Nodes Expanded » 1 —— Nodes Expanded
- - - Search Time - - - Search Time

Avg. Speedup Factor
Avg. Speedup Factor

* -1 — Nodes Expanded
- - - Search Time

Avg. Speedup Factor

T T T T T

50 100 150 [100 200

Path Length

300 400 500 0 200 400 600 800

Path Length Path Length

Figure 5: Average A* speedup on each of our three benchmarks. Results are given in terms of nodes expanded and search time.

wide open areas (both commonly seen in video games*) we
can often compute optimal paths much faster than searching
on the original map. On less favourable map topographies
we achieve more modest improvements. However, since
our method is orthogonal to existing search techniques, it
could be integrated as part of a larger framework involving
specialised heuristics or other speedup techniques; for ex-
ample as described in (Botea, Miiller, and Schaeffer 2004;
Bjornsson et al. 2005; Bjornsson and Halldérsson 2006).
One direction for further work is to study breaking path
symmetries in 8-connected grid maps. This domain also ex-
hibits a high degree of path symmetry but the problem is
more challenging because each tile has a higher branching
factor. Another direction for future work is to investigate
alternative decomposition algorithms which produce bigger
rooms and improve the performance of the current method.

Acknowledgments

We thank Philip Kilby for the many engaging discussions
and continued support during the development of this work.
We also thank Alban Grastien for taking the time to review
and comment on draft versions of this paper. NICTA is
funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the
ICT Centre of Excellence program.

References

Bjornsson, Y., and Halldérsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9-14.

Bjornsson, Y.; Enzenberger, M.; Holte, R. C.; and Schaeffer,
J. 2005. Fringe search: Beating A* at pathfinding on game
maps. In CIG’05, 125-132.

Bolanca, M. 2009. Achieving fast and optimal pathfinding
through the use of macro steps in obstacle free areas. Aus-
tralian National University Honours Thesis.

“For example, Blizzard’s popular multi-player game World of
Warcraft

Botea, A.; Miiller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. J. Game Dev. 1(1):7-28.

Cazenave, T. 2006. Optimizations of data structures, heuris-
tics and algorithms for path-finding on maps. In CIG, 27-33.

Goldberg, A. V., and Harrelson, C. 2005. Computing the
shortest path: A* search meets graph theory. In SODA, 156—
165.

Harabor, D., and Botea, A. 2008. Hierarchical path plan-
ning for multi-size agents in heterogeneous environments.
In CIG08.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics (4):100-107.

Helmert, M., and Roger, G. 2008. How good is almost
perfect? In AAAI, 944-949.

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2009. Using
swamps to improve optimal pathfinding. In AAMAS, 1163—
1164.

Pohl, 1. 1977. Practical and theoretical considerations in
heuristic search algorithms. In Elcock, E. W., and Michie,
D., eds., Machine Intelligence 8. Ellis Horwood Ltd and
John Wiley & Sons.

Sturtevant, N. R., and Buro, M. 2005. Partial pathfinding
using map abstraction and refinement. In AAAI, 1392-1397.

Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609-614.

Walsh, T. 2007. Breaking value symmetries. In CP, 880—
888.

Wang, K.-H. C., and Botea, A. 2008. Fast and memory-
efficient multi-agent pathfinding. In ICAPS, 380-387.

Yap, P. 2002. Grid-based pathfinding. In LNCS, volume
2338. 44-55.

