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Fast Algorithm for Catching a Prey Quickly in Known
and Partially Known Game Maps

Jorge A. Baier, Adi Botea, Daniel Harabor, and Carlos Hernandez

Abstract—In moving target search, the objective is to guide a
hunter agent to catch a moving prey. Even though in game appli-
cations maps are always available at developing time, current ap-
proaches to moving target search do not exploit preprocessing to
improve search performance. In this paper, we propose MtsCopa,
an algorithm that exploits precomputed information in the form
of compressed path databases (CPDs), and that is able to guide a
hunter agent in both known and partially known terrain. CPDs
have previously been used in standard, fixed-target pathfinding but
had not been used in the context of moving target search. We eval-
uated MtsCopa over standard game maps. Our speed results are
orders of magnitude better than current state of the art. The time
per individual move is improved, which is important in real-time
search scenarios, where the time available to make a move is lim-
ited. Compared to state of the art, the number of hunter moves
is often better and otherwise comparable, since CPDs provide op-
timal moves along shortest paths. Compared to previous successful
methods, such as I-ARA*, our method is simple to understand and
implement. In addition, we prove MtsCopa always guides the agent
to catch the prey when possible.

Index Terms—Incremental search, moving target search, navi-
gation, path finding, predator prey games.

I. INTRODUCTION

HE objective of moving target search (MTS) [9] is to de-

cide the moves of a hunter agent, to allow it to capture
a moving agent called the target or the prey. MTS algorithms
can be classified into offline and online methods [19]. While
offline algorithms (e.g., [6], [15]) determine an optimal move
policy for the hunter considering all possible moving strategies
of the target, online algorithms react to the actual moves of the
target, searching repeatedly. Complete-path online algorithms
(e.g., [18], [19]) compute a complete path between the hunter
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and the target which is then followed by the hunter until the
target is caught or moves off the path. Reactive on-line algo-
rithms (e.g., [9]), on the other hand, carry out a bounded search
to compute a prefix of a path towards the target. They can func-
tion under strict time deadlines, but, as they tend to make my-
opic decisions, the hunter may perform poorly.

We consider the problem of online MTS in partially known
environments in which a subset of the obstacles in the map are
known by the hunter prior to search, while remaining obsta-
cles become known only when they are within the hunter's vi-
sual range. When the hunter observes an obstacle, it updates its
search graph to reflect obstacles in the actual environment. The
additional case when obstacles may appear and disappear dy-
namically is beyond the focus of this work.

MTS in partially known environments has direct application
to video games in which it is necessary to program the move-
ments of an automated character that should chase other charac-
ters. Frequently in these applications the map is designed by the
game developers but the shape of the terrain may be changed
during the game by the players. Since a significant part of the
map is known in advance, it seems sensible to design algorithms
that exploit such knowledge during the online search required
for catching the prey. However, current approaches to MTS do
not exploit any knowledge about the map in order to speed up
search.

In this paper, we propose Moving Target Search with Com-
pressed Paths (MtsCopa), an online MTS algorithm that exploits
precomputed information about the map, in the form of a com-
pressed path database (CPD) [1]. A CPD for a map is a database
that allows to quickly retrieve, for any pair of states (s, 1), the
first move of a shortest path between s and ¢ on such a map.
CPDs are built in a preprocessing step, and are reasonably com-
pact [1].

At each iteration, MtsCopa uses the CPD to determine the
next move to catch the prey. Since the terrain may change during
the game the CPD for a certain map does not always contain
legal paths between any two positions. Therefore, sometimes
MtsCopa requires to run a search algorithm to determine its next
move. Since MtsCopa exploits the CPD, such a search can finish
much earlier than a standard A* search. The latter has to con-
tinue all the way until the target position is selected for expan-
sion. Instead, MtsCopa runs an A* search which stops as soon
as a state which is connected to the target via a path on the CPD
is about to be expanded.

Under reasonable assumptions, we prove that MtsCopa is
complete. However, similarly to the case of other online MTS

1943-068X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



194 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 7, NO. 2, JUNE 2015

methods, optimality (in terms of the number of hunter moves)
cannot be guaranteed. Since the target constantly moves, there
is no guarantee that using shortest-path moves for the hunter
minimizes the total number of moves. In practice, nonetheless,
both our results and previous results (e.g., [ 19]) show that taking
optimal moves towards the current prey position leads to fewer
hunter moves.

MtsCopa is very simple to implement as it just requires
an interface to the CPD, and the implementation of a simple
A* search algorithm. We evaluate MtsCopa on standard
pathfinding game maps and compare it to the state-of-the-art
I-ARA* algorithm [19]. We show that MtsCopa outperforms
I-ARA* usually by two or three orders of magnitude in terms
of runtime during a chase. In a more fine-grained evaluation
we investigate the performance of both algorithms when a time
limit to compute the hunter's move is given. As the limit is
decreased, the performance of I-ARA* degrades, exceeding
the time limit per episode more frequently and returning worse
solutions. MtsCopa's performance is much more robust to
setting a time limit per move. Furthermore, MtsCopa requires
fewer iterations to catch the target.

To achieve its online speed performance, MtsCopa requires
offline preprocessing and memory to store a CPD. These re-
quirements depend on the size and topology of a map, as il-
lustrated in our experiments. On the other hand, existing state-
or-the-art methods, such as -ARA* need no preprocessing, and
have a much lighter memory footprint.

The rest of the paper is organized as follows. We first briefly
review related work. We continue by describing our approach,
and presenting a formal analysis. An experimental evaluation
comes next, followed by a summary and future work ideas.

II. PREVIOUS WORK

The version of MtsCopa that we present in this paper is a sig-
nificant extension of MtsCopa for known environments [3]. The
idea of searching only until finding a state which is believed
to be connected to the goal via a shortest-path has also been
proposed in the context real-time search (e.g., [16]) and incre-
mental heuristic search (e.g., [8]). However, to our knowledge,
MtsCopa is the first algorithm to incorporate this idea in the con-
text of moving-target search.

Other recent work has also addressed the problem of moving-
target search in various settings. MT-Adaptive A* [11] is an
adaptation of Adaptive A* [10] to the problem of moving-target
search in unknown environments. The experiments by [11] re-
port MT-Adaptive A* is 1.23 times faster than repeated A*.
I-ARA* [10] is a moving-target search algorithm for known
environments, which in the evaluation reported by [10] out-
performs repeated A* by a factor of 36.81 on average. Finally
Moving-Target D*-Lite [18] is an algorithm for moving-target
search in dynamic terrain. In dynamic terrain, the agent may
encounter previously unknown obstacles but also some blocked
cells may become unblocked before the prey is caught. In the
evaluation of [18], Moving-Target D*-Lite was shown to be
6.94 times faster on average than repeated A*.

In summary, a variety of algorithms for moving-target search
exist. Some of them are applicable to more general settings (e.g.,
dynamic terrain) than the one we focus on this paper. In addi-
tion, from the data currently published, one can conclude that

the algorithm that seems to outperform repeated A* by a larger
margin is [F-ARA*.

Besides CPDs, in fixed-target real-time search, the literature
shows other recent database-driven contributions, such as pre-
computing paths between selected pairs of locations, and caching
information that can be used to reconstruct these quickly [4],
[12],[13]. Akey idea s identifying so called reachability regions
on the map, that can successfully be traversed with hill-climbing.
In contrast, CPDs perform a full precomputation of all-pairs
shortest paths data, which is then compressed [1].

III. APPROACH

We assume both the hunter and the target move over an en-
vironment defined by an undirected graph G = (V, E), where
each of the arcs in 2 correspond to the legal moves that any of
the agents can perform. Initially, the agents have partial knowl-
edge of the obstacles in the map; specifically, we assume the
agents know the position of a subset of the obstacles in the map.
As such, the hunter and the prey believe that their search graph
is defined by Go = (V, Ey), such that E = {(u,v) € Ey |
u,v & M}, for some subset M of V. In videogame applica-
tions, one can think of Gy as the map of the environment of the
deployed game, over which new obstacles, determined by the
game conditions, may be added.

A generic MTS framework for a partially known environment
is illustrated in Algorithm 1. At each iteration, the hunter and
the prey will take one action each. Both the hunter and the prey
have a general knowledge of the map before they start moving
but there are obstacles that are not known to them in advance.
As such, both agents observe their local environment before
moving, removing the arcs in the search graphs GGy, (the hunter's
search graph) and G (the prey's search graph) that lead to newly
observed obstacles. To guarantee that the prey can be caught by
the hunter we assume that the former moves more slowly; this
can be implemented by ensuring that, after a number of iter-
ations, the target has performed fewer moves than the hunter.
This is a standard assumption in the MTS literature.

Algorithm 1: Generic framework for moving target search.

Input: node sg; node tg; graph Gy

1 posp + sq /*init. hunter's position */

2 pos; + 1ty /* init. prey's position /

3 Gy <+ Gy /* hunter's search graph =/

4 G+ Gy /* prey's search graph «/

5 while prey is not captured do

6 Hunter and prey observe environment, updating G,

(hunter) and G; (prey)
7 posp + getHunterNextPosition(Gy, posy, post)
pos; + getPreyNextPosition (G, pos;, posy,).

Algorithm 2 shows how MtsCopa implements the getH-
unterNextPosition procedure. The static variable path—which
in the first call is initialized as empty—stores a previously
computed path to a (previous) position of the target. Such a path
is followed unless the next position is an obstacle or its size be-
comes smaller than a parameter k. When a new path is needed,
the path is recomputed using the function ComputePath. The
parameter k allows to control the search effort performed by
MtsCopa. As such, if k is set to a very large value, MtsCopa
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will re-compute a path to the target in every iteration of the
main algorithm. On the other hand, if & is set to 0, MtsCopa
computes a new path only when the current one is blocked
or empty; in other words, it sticks to a previously computed
path unless such a path is not viable. For values between 0 and
infinity, MtsCopa follows a previously computed path until it is
k steps away from a previous position of the target.

In a fully known, static graph, using a CPD would be suffi-
cient to provide hunter moves. In our problem, however, poten-
tial discrepancies between G, and Gy may render CPD data,
computed for the original graph Gy, not fully accurate in the
graph G,. This is why function ComputePath uses a combina-
tion of CPD data and A* search [7] in the graph Gp. Our A*
code implements the open list as a priority queue. The goal con-
dition of A*, i.e., the function that determines when the search
should stop, becomes true for a state s in GG, when the path from
s to pos; in Gy (which can be retrieved quickly using the CPD)
is also a path in the hunter's search graph Gp,. In other words,
the search stops when A* finds a state which the hunter believes
is connected to the target using the moves given by the CPD. A*
needs, in addition, a heuristic function & which is used to guide
search. MtsCopa uses the length of the path from s to pos; in
Gy (which can be retrieved quickly using the CPD) as the ad-
missible heuristic value for s.

Algorithm 2: MtsCopa for partially known terrain.
1 if first call then
2 path < empty
3 if path.size() < k or path.top() is an obstacle then
4 path « ComputePath(Gy, posy, pos:)
5 return path.top()

Note that both to determine whether a state s is a goal and to
compute the heuristic value of a state s it is necessary to iterate
through the path that connects s with the position of the target
on G,. Depending on how much time resources are available,
performing such a search for every single hunter step may be
too expensive to afford. That is, then, the main motivation for
introducing the k parameter described earlier, which can be used
to limit the amount of search carried out by MtsCopa.

Finally, note that MtsCopa can be improved significantly if
the search graph is fully known prior to search; i.e., in the case
G corresponds to the actual terrain. In such a case, Algorithm
3 should be used.!

Algorithm 3: MtsCopa for completely known terrain.

1 move + GetMoveCPD(pos;, posy)
2 return move

IV. THEORETICAL ANALYSIS

When obstacles newly discovered by the hunter divide the
map, separating the hunter from the prey, the algorithm correctly
reports that the problem has no solution. This remark allows us
to focus, with no loss of generality, on the case when a map
remains connected at all times. For simplicity, the analysis pre-
sented in this section assumes that all edges have a cost of 1. We

IThis is actually the algorithm presented in [3].
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prove that, when the prey stays put once in a while, MtsCopa is
guaranteed to lead the hunter to a successful catch.

Let dg, (x,y) be the length (i.e., number of steps) of a
shortest path from z to y on graph Gp. Furthermore, let
posy and posy denote, respectively, the position of the
hunter and the prey at the start of iteration n of Algorithm
I's main loop, right before the agents' positions are updated
(i.e., at Line 6). Let G7, on the other hand, denote the graph
G, right after the execution of Line 6, with n a valid it-
eration of Algorithm 1. To simplify our notation, we write
d(posy,, posy}) instead of dgy (posj, posy'), for all n. Below we
say that a path is computed at iteration n if the invocation of
getHunterNextPosition() at iteration n of Algorithm 1 results
in the execution of Line 4 of Algorithm 2.

Lemma 1: Let n and m be such that n < m, such that a
path is computed at iteration n, and such that for every j €
{n+1,n+2,...,m}, no path is computed at iteration j. Then
d(posy, pos}) > d(pos}', posi®) + T, where 7 is the number of
times the prey stayed put between iterations 7 and m.

Proof: Let o denote the path computed at iteration 7. Note
that because ¢ was returned by A*, |¢| = d(pos}, pos}). Fur-
thermore let o; and o7, be the sequence of moves (represented
as graph edges) taken by the target and the hunter, respectively,
between iteration n and iteration m. o, is a prefix of ¢, since the
hunter has been following the path o; thus ¢ = o,0'. Observe
furthermore that |0y, | = |o,|+7, where 7 denotes the number of
times the prey stayed put between iterations n and m. At itera-
tion m, ¢'oy is a path between the hunter and the prey. Observe
that

oo =o'| + |ov
=|o'| +lon] — 7
=lo| -7

=d(pos}y,posy) — T.

Since a path with cost d(posj;, posy) — T exists between pos)”
and pos}*, then d(posy, posy) — ™ > d(pos}’, pos;*), which
finishes the proof. u

Now observe that if at iteration 7 a path is computed it is pos-
sible that d(posy*,pos? 1) < d(pos}, pos}). This can only
happen because a new obstacle was discovered and indeed the
graph G5, has changed, as established by the following result.

Lemma 2: Let n and m be such that n < m, such that a path
is computed at both iteration n and iteration m. Furthermore,
assume G3* = GJ.. Then d(pos}., posy) > d(posy’, posy*) +,
where 7 is the number of times the prey stayed put between
iterations n and m.

Proof: By Lemma 1 we know that the distance between the
hunter and the prey does not increase as we follow a previously
computed path. Now, let j be an iteration at which a path was
not computed and j 41 an iteration at which a path is computed.
Then because the graph G, does not change between iterations,
the path that exists at iteration j between pos; and pos; can be
converted into a path from ;l)osff1 to pos{ 1 of the same size or
less, if the prey stayed put. Thus the distance between the hunter
and the prey may not increase between iteration j and j + 1. l

Theorem 1: Let Algorithm 1 be such that the prey stays put
every nth iteration. Furthermore, assume there exists a path be-
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TABLE I
MAP DATA (NAME, HEIGHT, WIDTH, NUMBER OF NODES) AND
PREPROCESSING STATISTICS (SIZE OF CPD AND TIME TO
BuiLD CPD ASSUMING ONE CPU CORE IN USE)

Map HxW Nodes | CPD Total
size | preproc.

(MB) | minutes

Domain Warcraft 111 (WC3)
darkforest 161x161 10,691 1.8 0.8
divide-cong-1 169x169 19,440 3.6 2.8
thecrucible 130x130 | 10,280 2.0 0.7
Domain Dragon Age: Origins (DAO)
orz100d 395x412 | 99,626 | 38.0 107.2
0rz900d 656x1491 | 96,603 | 15.0 90.9
Domain Baldur’s Gate IT (BG)

ARO0603SR 512x512 | 57,372 92 29.9
ARO0300SR 320x320 | 26,950 5.5 5.6
ARO500SR 320x320 | 29,160 5.0 6.7
ARO700SR 320x320 | 51,586 | 18.0 25.8

tween posy, and pos; in the search graph GG. Then, independently
of the value of &, MtsCopa guides the hunter to eventually catch
the prey.

Proof: Assume the hunter does not catch the prey and that
Algorithm 1 iterates forever. Since the number of obstacles is
finite, at some point in time G, cannot change anymore. From
this point we use Lemma 2 to conclude the distance between the
hunter and the prey will decrease by one each time it stays put.2
The hunter eventually catches the prey, which contradicts our
initial assumption, proving the theorem. |

We note that simpler, known strategies, such as navigating
to a previous location of the prey, and then following the prey
steps, are also complete. However, ignoring the possibility of
taking shortcuts towards the current location of the prey has a
corresponding price in terms of solution quality.

V. EXPERIMENTAL SETUP

We compared MtsCopa with the recent, state-of-the-art MTS
solver I-ARA* [19]. In MtsCopa, the CPD construction and
querying uses the source code of Copa [2]. Copa and [-ARA*
were obtained from their respective authors.

In our experiments we used 9 game maps taken from Nathan
Sturtevant's online repository3[17]. Following the approach of
Sun et al. [19], all maps are considered to be 4-connected.

Table I provides details on the size of each map and includes
additional statistics from our preprocessing phase. The CPD size
is reported in MBs, and the total preprocessing time (i.e., time
to build a CPD) is measured in minutes. Note that the actual
wall-clock preprocessing time is substantially smaller, as pre-
processing was performed with independent threads on a ma-

2The distance could decrease by more than one if the prey is not escaping
from the hunter.

3http://movingai.com/benchmarks/

chine with 6 physical cores. It is a 3.47-GHz machine, running
Red Hat Enterprise. Apart from preprocessing, all experiments
were run on a serial, single-core setting, on a 2.00-GHz machine
running Ubuntu Linux.

Each map is associated with a scenario file that contains a list
of problems modeled as randomly selected start-target pairs. In
every case the target is reachable from the start. The number
of instances in each scenario is 1000 start-target pairs. To exe-
cute a problem we place the hunter at the start location and the
prey at the target location. We evaluate an MtsCopa hunter and
an [-ARA* hunter. The movement strategy for the prey is as in
previous work (e.g., [19]): it moves along an optimal path to-
wards a destination picked at random.

After reaching the destination, a new destination is selected
and the process repeats. Every 10th move the prey stays put,
to ensure that the hunter eventually catches the prey [19]. To
choose a destination we use a fixed random seed, to make sure
that the moves of the prey can be reproduced exactly in all runs
of the experiment. In particular, this is useful to ensure that the
prey behaves identically when both MtsCopa and I-ARA* are
tested as hunters.

An important feature of [-ARA* is that it is able to receive
a time limit parameter, used to restrict the time spent to com-
pute one hunter move (i.e., time per episode). Each time [-ARA*
searches for a new path towards the target it does so by running
a sequence of search rounds. The first of those rounds returns
an ¢-optimal solution, where ¢ is a parameter. The remaining
rounds return increasingly better solutions. If after finishing a
search round the time limit has passed, then the search episode
is concluded. As such, different runtimes, and solutions of dif-
ferent quality may be obtained by varying the parameter. In ad-
dition, respecting the limit is not always guaranteed. In our ex-
periments, we evaluate [-ARA*'s performance for different time
limits.

The set of 9 maps was partitioned into 3 groups, according
to the 3 domains outlined in Table I. We compared the perfor-
mance of MtsCopa with I-ARA* since, as implied by the anal-
ysis in Section II, it represents the state-of-the-art in moving
target search. Both known terrains and partially known terrains
are used in the evaluation. In a partially known terrain the orig-
inal map file is known to both agents whereas additional obsta-
cles generated at random are not. We left an evaluation in dy-
namic domains—in which initially unknown obstacles may dis-
appear during execution—out of the scope of this short paper.

Following [20], in the first part of our evaluation we use a
10% obstacle rate, and thus if a cell is not an obstacle in the
original map, we set it to be an obstacle with 10% probability.
The hunter and the prey agents can observe the actual status of
such a cell when they attempt to move to it. For MtsCopa we
evaluated three values for the & parameter: 0, 20, and oco. In
addition we considered an implementation with a variable k&, in
which after each search for a new path, & is set to the maximum
between 10 and a percentage of the size of newly found path.
Specifically we used 25%, 50%, and 75%.

In partially known terrain I-ARA* is run in repeated mode,
which means that each time an unknown obstacle is found by
the hunter, search is restarted from scratch. [-ARA* was always
run with its parameter € set to 2.
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To report our results, we use two metrics: the total time the
hunter spent computing where to move next (i.e., total search
time) and the total number of moves taken by the hunter to
catch the prey. For all experiments we imposed a range of time
limits per move: 3, 30, 300, and 3000 us. The latter value is
the time limit for which Sun ef al. [19] report best results for
I-ARA*, and this is the value we use to compare MtsCopa
against [-ARA* in Figs. 1 and 2. For partially known terrain
those figures report the variant of MtsCopa (k = 50%) which
exhibited the best compromise between number of moves and
total search time; we also report the variants k = 0 and & = oo
as a reference.

Number of Hunter Moves (MtsCopa(k = inf))

Number of Hunter Moves (MtsCopa(k = inf))

moves taken by MtsCopa in known and partially known terrain.

VI. RESULTS

Tables II and III show, for both I-ARA* and MtsCopa,
how often the computation of a hunter move exceeded the
time limit at hand, and the average number of hunter moves
required to reach the target. When the time limit is very small,
the I-ARA* hunter often is unable to compute a move within
the alotted time but as the time limit is increased I-ARA*
meets the limit more frequently. In known terrain MtsCopa
never exceeds the time limits when the limit is more than 30
us and exceeds it very seldom otherwise (less than 0.5% of
the time). In partially known terrain, both algorithms exceed
the time limit more often. This is because more search is
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TABLE 11
I-ARA* VERSUS MTSCOPA: PERCENTAGE OF MOVES EXCEEDING A
PRE-DEFINED SEARCH TIME LIMIT PER MOVE AND AVERAGE NUMBER OF
MOVES REQUIRED TO CATCH THE TARGET IN KNOWN TERRAIN

BG DAO WC3
Exceeded Moves Exceeded Moves Exceeded Moves
t=3us
I-ARA* 732% 380.0 72.0% 492.8  663% 150.4
MtsCopa 0.9% 300.1 03% 3914 0.5% 109.9
t = 30us
I-ARA* 412% 3627  362% 471.7 17.3% 135.6
MtsCopa 0.0% 300.1 0.0% 391.4 0.0% 109.9
t = 300us
I-ARA* 9.5% 336.5 9.5% 437.3 1.7% 128.3
MtsCopa 0.0% 300.1 0.0% 391.4 0.0% 109.9
t = 3000us
I-ARA* 0.4% 331.7 0.6% 434.9 0.0% 128.1
MtsCopa 0.0% 300.1 0.0% 391.4 0.0% 109.9

needed to deal with additional obstacles. MtsCopa, run with &
€ {0,20,25%,50%, 75%} rarely exceeds the time deadlines
we tried. However, as expected, MtsCopa with k& = oo can
require more time than I-ARA*, depending on the deadline.

As expected, when given a tighter deadline I-ARA* returns
worse solutions, since it has less time to refine a solution. In
known terrain, average solution quality is between 14% and
17% worse when the time limit is set to 3 us compared to when it
is set to 3000 us. In partially known terrain, on the other hand,
average solution quality is between 4.4% to 11% worse when
the time limit is set to 3 s compared to when it is set to 3000 us.

In Fig. 1, we observe that MtsCopa outperforms I-ARA*
significantly in terms of runtime on every tested map, in both
known and partially known terrain. In known terrain, speedups
are usually around 2 orders of magnitude for the BG and DAO
maps, while for the WC maps they are usually around 1.5 or-
ders of magnitude. In partially known terrain, on the other hand,
when k& € {0,50%}, the speedup ranges between 1 to 2.5 or-
ders of magnitude for around 75% of the hardest instances of
the BG and DAO maps, while they are between 1 and 2 orders
of magnitude for around 70% of the instances on the WC maps.
On the other hand, when & = oco—a value for which MtsCopa
runs an A* search in each iteration—the speedup is still signif-
icant in the DAO and BG maps: usually MtsCopa is between 2
and 3 times faster. Recall that, in MtsCopa, an A* search can
finish earlier than a standard A* search, as CPDs can be used
for heuristic guidance and for a customized goal test. This helps
explaining this speed up. At the same time, for & = oo, in a few
problems we observe I-ARA* that outperforms MtsCopa.

Since MtsCopa moves over a shortest path to the target, we
observe, in Fig. 2, an improvement over [-ARA* in the total
number of moves required by the hunter to catch the prey. As
instances get harder in terms of MtsCopa hunter moves, the
hunter-moves performance of [-ARA* improves in known ter-
rain. We observe a similar behavior in partially known terrain
for k = 50% and k = co. However, k = (0 most times obtains
solutions worse than [-ARA*.

TABLE III
I-ARA* VERSUS MTSCOPA: PERCENTAGE OF MOVES EXCEEDING A
PREDEFINED SEARCH TIME LIMIT PER MOVE AND AVERAGE NUMBER OF
MOVES REQUIRED TO CATCH THE TARGET IN PARTIALLY KNOWN TERRAIN

BG DAO WC3
Exceeded Moves Exceeded Moves Exceeded Moves
t = 3us
I-ARA* 61.6% 307.7 59.1% 264.5 589% 116.7
MTSCopa(0) 2.0% 289.6 2.8% 258.5 39% 117.6
MTSCopa(20) 10.0% 271.1 125% 238.8 222%  96.9
MTSCopa(co) 96.1% 2623  951% 2254  903% 91.2
MTSCopa(25%) 3.9% 264.5 4.6% 230.6 9.0% 96.3
MTSCopa(50%) 4.7% 262.3 55% 2263 108% 91.5
MTSCopa(75%) 7.0% 262.2 8.0% 225.5 153% 91.1
t = 30us
[-ARA* 34.7% 305.4  28.4% 262.2 17.5% 114.3
MTSCopa(0) 0.8% 289.6 1.0% 258.5 1.1% 117.6
MTSCopa(20) 1.0% 271.1 1.2% 238.8 1.4%  96.9
MTSCopa(co) 64.7% 2623  60.4% 2254  277% 91.2
MTSCopa(25%) 09% 264.5 1.0% 230.6 1.3% 96.3
MTSCopa(50%) 1.3% 262.3 1.4% 226.3 1.9% 91.5
MTSCopa(75%) 23% 2622 2.5% 225.5 29% 91.1
t = 300us
I-ARA* 11.4% 299.1 9.5% 256.4 23% 106.9
MTSCopa(0) 0.1% 289.6 0.1% 258.5 0.0% 117.6
MTSCopa(20) 0.2% 271.1 0.1% 238.8 0.0% 969
MTSCopa(co) 1.5% 262.3 02% 225.4 0.1% 91.2
MTSCopa(25%) 0.2% 264.5 02% 230.6 0.0% 96.3
MTSCopa(50%) 02% 262.3 02% 226.3 0.0% 91.5
MTSCopa(75%) 02% 262.2 02% 225.5 0.0% 91.1
t = 3000pus

[-ARA* 0.8% 294.0 0.8% 253.2 0.0% 104.6
MTSCopa(0) 0.0% 289.6 0.0% 258.5 0.0% 117.6
MTSCopa(20) 0.0% 271.1 0.0% 238.8 0.0% 969
MTSCopa(oo) 0.0% 262.3 0.0% 2254 0.0% 91.2
MTSCopa(25%) 0.0% 264.5 0.0% 230.6 0.0% 96.3
MTSCopa(50%) 0.0% 2623 0.0% 226.3 0.0% 91.5
MTSCopa(75%) 0.0% 262.2 0.0% 225.5 0.0% 91.1

To observe the performance of the algorithms over different
obstacle rates, we ran an additional experiment, in which we
chose one map from each benchmark group. Specifically we
tested for 4%, 8%, and 12% obstacle rates. Table IV shows
a summary of performance indicators. As before, on average
MTSCopa outperforms I-ARA* by two orders of magnitude in
terms of time, finding slightly better solutions.

We conclude that in known terrain MtsCopa is clearly supe-
rior to [-ARA*, in terms of speed and solution quality. In par-
tially known terrain, MtsCopa(50%) is the algorithm achieves
the best balance in between of hunter moves and time perfor-
mance, outperforming [-ARA* significantly in runtime, while
obtaining solutions of similar quality.
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TABLE IV
AVERAGE NUMBER OF MOVES AND RUNTIME FOR 3 GAME MAPS
(DARKFOREST, ORZ100D, ARO300SR) FOR DIFFERENT OBSTACLE RATES

Moves Runtime(ms)
4% obs 8% obs 12% obs 4% obs 8% obs 12% obs
IARA* 1829 184.0 191.0 3471 39.16 46.11
MTSCopa(25%) 1843 1724 169.7 0.48 0.40 0.41
MTSCopa(50%) 1704 167.0 166.8 0.51 0.47 0.49
MTSCopa(75%) 168.3  166.2 166.7 0.89 1.21 1.56

A. Alternative Prey Movement Strategies

Above we evaluated a standard prey moving strategy [19].
Since MTSCopa outperforms [-ARA* by a large margin we
regarded as unlikely that a change in the prey's moving strategy
would alter the outcome of the comparison. To confirm this
we implemented a hunter-aware movement strategy in which
the prey, instead of choosing a random location as the next
movement, draws 10 possible destinations at random and
chooses the one that maximizes the angle formed between
the hunter, the current position (vertex), and the candidate
destination. We tested both algorithms over 2000 problems on
the ARO300SR map. As before, MTSCopa(50%) significantly
outperformed I-ARA*. With respect to the original moving
strategy, hunter moves increased by 6.7% and 5.2% for I-ARA*
and MtsCopa(50%), respectively. While with the original
strategy MtsCopa(50%) ran 26 times faster than [-ARA*,
with this new one it ran 21 times faster. This small evaluation
supports the fact that MtsCopa outperforms I-ARA* signifi-
cantly regardless of the prey movement strategy. A large-scale
evaluation under other more sophisticated moving strategies
(e.g., [14]) is left for future work.

VII. SUMMARY AND FUTURE WORK

Moving target search [9] differs from standard path planning
in that the goal location changes as the hunter moves along. Pre-
vious approaches to moving target search do not exploit previ-
ously computed information. In this work, we show how pre-
computed information in the form of a compressed path data-
base [1] can be exploited to improve efficiency. We proposed
MtsCopa, a simple moving-target search solver, which is suit-
able for both known and partially known terrain.

Unlike existing moving-target search methods, MtsCopa
needs preprocessing time and memory to cache the re-
sults. When such resources are available, MtsCopa advances
state-of-the-art in moving target search convincingly. Its speed
is orders of magnitude better than I-ARA*. The quality of
solutions is empirically shown to be good. We showed that the
MtsCopa has a very good real-time performance in practice,
providing individual moves very quickly at all stages of a
chase, including the first move. In addition, we proved that
MtsCopa leads the hunter to catch its prey in partially known
environments if the prey moves more slowly.

In future work, we plan to study our ideas in a multihunter,
multiprey setting. In addition, we believe that our algorithm
could be successful to static-target search in dynamic environ-
ments. The ability to adjust a CPD as changes are discovered in
the graph would be beneficial.
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